首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2021-02-25
85
问题
设α
i
=(α
i1
,α
i2
,…,α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关,已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设有一组数x
1
,x
2
,…,x
r+1
使得 x
1
α
1
+x
2
α
2
+…+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故 β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
,…,α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
本题是向量与方程组的综合题.注意β=(b
1
,b
2
,…,b
n
)
T
是线性方程组的解,则有
即β
T
α
i
=0(i=1,2,…,r).
转载请注明原文地址:https://kaotiyun.com/show/KY84777K
0
考研数学二
相关试题推荐
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式abc2≤27()5(a>0,b>0,c>0).
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
随机试题
A.槐二醇B.芦丁C.金丝桃苷D.杜鹃素E.槲皮素
举证是指当事人向人民法院提供证据。为了防止在诉讼过程中出现“证据突袭”的现象,损害对方当事人利益,最高人民法院对提供证据的时间进行了规定。下列关于举证期限的说法,错误的有:()
按我国海关的监管方式,该批货物属于:该批货物应在何时以前出境:
英语学习中,合作学习强调的是______。
具体行政行为,是指由行政主体行使行政权力,就特定的具体事项,对特定公民、法人或者其他组织作出的有关其权利义务的单方行为。根据以上定义,下列属于具体行政行为的是()。
列宁针对殖民地半殖民地国家的状况,指出:“认为无产阶级政党(如果它一般地说能够在这类国家里产生的话)不同农民运动发生一定的关系,不在实际上支持农民运动,就能在这些落后国家里实行共产主义的策略和共产主义的政策,那就是空想”毛泽东认为:农民是“中国工人的前身”
()协议是内部网关协议中使用最广泛的一种协议。
InJanuary2002,duringthefirstweekofasix-monthstayattheChildren’sHospitalofPhiladelphiaforleukemia(白血病)treatm
Ahistoryoflongandeffortlesssuccesscanbeadreadfulhandicap,but,ifproperlyhandled,itmaybecomeadrivingforce.Whe
Youshouldlearntotake______ofeveryopportunitytoimproveyouroralEnglish.
最新回复
(
0
)