首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2021-02-25
62
问题
设α
i
=(α
i1
,α
i2
,…,α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关,已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设有一组数x
1
,x
2
,…,x
r+1
使得 x
1
α
1
+x
2
α
2
+…+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故 β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
,…,α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
本题是向量与方程组的综合题.注意β=(b
1
,b
2
,…,b
n
)
T
是线性方程组的解,则有
即β
T
α
i
=0(i=1,2,…,r).
转载请注明原文地址:https://kaotiyun.com/show/KY84777K
0
考研数学二
相关试题推荐
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
设α为n维非零列向量,E为n阶单位阵,试证A=E—为正交矩阵。
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
随机试题
(2019年菏泽)地理老师张某在给学生讲课时,经常读错字,有学生对他提出了纠正,虽然他当场虚心接受了学生的意见,但过后依然我行我素,并公开说,老师年龄大了,有些习惯改不了,并同时表示自己是教地理的,不是教语文的,希望同学们谅解。张老师的做法()
肠外营养的并发症包括()
A.滑B.涩C.弦D.促E.数
A、凉血消斑B、消肿止痛C、消痈排脓D、利尿通淋E、凉血止痢青黛的功效有
浙江省宁德地区福安市湾坞乡下关村旁边有一大块滩涂,属于国家所有。1990年以前该滩涂属于荒地,未经开发。1990年,下关村村民开发利用此滩涂种蛏成功。1991年以后,下关村村委会组织村民在该滩涂上种植蛏苗。根据国家有关规定,下关村获得了该滩涂的使用权。19
下列不是人为噪声的措施有()。
经济学所讲的投资是指增加或更换资本资产的支出,资本资产包括()。
在西方社会,下列关于城市社会隔离对居住分布特征的影响的表述中,正确的是()。
细小的火山灰中含有二氧化硅,这种化合物的熔点是1100摄氏度,而目前大部分飞机的涡轮发动机工作温度为1400摄氏度,一旦火山灰被吸入引擎内部,二氧化硅熔化后就会吸附在涡轮叶片和涡轮导向叶片上,导致灾难性后果。1982年,两架飞机曾经从印度尼西亚西爪哇省加隆
【B1】【B2】
最新回复
(
0
)