首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
admin
2019-04-17
53
问题
(1998年试题,五)利用代换
y
’’
cosx一2y
’
sinx+3ycosx=e
x
化简,并求出原方程的通解
选项
答案
题设所给方程为变系数方程,可由代换[*]将其化为关于u的二阶微分方程再求解,应先由[*]求得y
’
,y
’’
与u
’
,u
’’
的关系如下,将y=usecx两边对x求导,得y
’
=u
’
8ecx+secx.tanx,(1)再由(1)式两边对x求导,得y
’’
=u
’’
secx+2u
’
se
’
cx.tanx+usecx.tan
2
x+usec
3
x(2)将式(1),式(2)代入原方程,得u
’’
+4u=e
x
,该方程是关于u的二阶常系数线性非齐次方程,先求其相应的齐次方程的通解,由特征方程λ
2
+4=0求得特征值为λ
1
=2i,λ
2
=一2i,从而齐次方程通解为y=C
1
cos2x+C
2
sin2x,设方程特解为y
*
=Ae
x
,代回方程u
’’
+4u=e
x
,得[*]因此[*],因此非齐次方程通解为[*]其中C
1
,C
2
为任意常数.由代换[*]原方程通解为[*]
解析
本题在化简原方程时,也可由代换u=ycosx两边对x求导,得u
’
=y
’
cosx—ysinx,(3)再由式(3)两边对x求导,得u
’’
=y
’’
cosx一2y
’
sinx—ycosx(4)式(3),式(4)与式(1),式(2)是等价的,代入原方程都可得出同样的方程u
’’
+4u=e
x
转载请注明原文地址:https://kaotiyun.com/show/8DV4777K
0
考研数学二
相关试题推荐
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
一复杂的系统由100个相互独立起作用的部件组成,在整个运行期间每个部件损坏的概率为0.10,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.
设A=,求与A乘积可交换的所有矩阵.
设随机变量(X,Y)的概率密度为f(x,y)=,求(1)系数k;(2)边缘概率密度;(3)X和Y是否独立.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=__________。
设函数f(x,y)连续,则二次积分等于()
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
随机试题
巴豆性烈,但为何可用于小儿科疾患?
再生障碍性贫血热入营血型宜选用急性白血病之气阴两虚证宜选用
排水通气管出口宜设在()。
关于预付款担保的说法,正确的是()。
“增值税专用发票”税款抵扣联上记录的进项税额可以在购货单位作为“进项税额”列账。()
下列各项中,属于新兴产业共同的结构特征的是()。
在边长为1的正方形ABCD中,AC与BD相交于O,以A、B、C、D分别为圆心,以对角线长的一半为半径画圆弧与正方形的边相交,如图,则图中阴影部分的面积为多少?(π=3.14)
氏族:部落
A、 B、 C、 D、 D
Electronicor"cyber"warfareholdsthepromiseofdestroyinganarmy’s-orevenawholenation’sabilitytofunctionwithouthur
最新回复
(
0
)