首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为,2阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAX=0,必有
设A为,2阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAX=0,必有
admin
2019-03-11
60
问题
设A为,2阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):A
T
AX=0,必有
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
A
解析
若向量X满足方程组AX=0,两端左乘A
T
,得A
T
AX=0,即x也满足方程组A
T
AX=0,故AX=0的解都是A
T
AX=0的解。
反之,若X满足A
T
AX=0,两端左乘X
T
,得X
T
A
T
AX=0,即(AX)
T
(AX)=0,或||AX||
2
=0,故AX=0,即X也满足方程组AX=0,故A
T
AX=0的解都是AX=0的解
由以上两方面,说明方程组(Ⅰ)与(Ⅱ)是同解的,故(A)正确。
转载请注明原文地址:https://kaotiyun.com/show/8XP4777K
0
考研数学三
相关试题推荐
设函数f(χ)=在(-∞,+∞)内连续,且f(χ)=0,则常数a、b满足【】
已知β1,β2是非齐次线性方程组Aχ=b的两个不同的解,α1,α2是对应齐次线性方程组Aχ=0的基础解系,k1,k2为任意常数,则方程组Aχ=b的通解(一般解)是【】
向量组α1,α2,…,αs线性无关的充分条件是().
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=()
设x=rcosθ,y=rsinθ,将极坐标下的累次积分转换成直角坐标系下的累次积分:dθ∫12cosθf(rcosθ,rsinθ)rdr=_________.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
确定常数a和b的值,使f(x)=x一(a+b)sinx当x→0时是x的5阶无穷小量.
设函数f(x)存x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)当h→0时是比h高阶的无穷小,试确定a、b的值.
随机试题
手部创口清创处理,一般不迟于
为避免指令矛盾,矩阵组织结构可以选择的运行模式有()
中央分隔带施工中埋设横向塑料排水管的进口用土工布包裹的作用是()。
非直线系数值最小的城市公共交通线网类型是()。
企业采用计划成本核算原材料时,如果当期的成本差异率为负数,那么反映在资产负债表中的原材料的实际成本大于计划成本。()
简述花鸟画中的“徐黄异体”各有什么特点?
表示单位属性方面特征的标志是___________,而表示单位数量方面特征的标志是________。
Whatdowelearnfromtheconversation?
HowdoesLindaknowthatLeeisatthecity?
Oneoftheappealingfeaturesofgametheoryisthewayitreflectssomanyaspectsofreallife.Towinagame,orsurviveint
最新回复
(
0
)