首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
admin
2018-06-27
62
问题
设非齐次方程组AX=β有解ξ
1
,ξ
2
,ξ
3
,其中ξ
1
=(1,2,3,4)
T
,ξ
2
+ξ
3
=(0,1,2,3)
T
,r(A)=3.求通解.
选项
答案
ξ
1
是AX=β的一个特解,只用再找AX=0的基础解系.从解是4维向量知,AX=β的未知数个数n=4.r(A)=3,于是,它的AX=0的基础解系由1个非零解构成. 由解的性质,2ξ
1
-(ξ
2
+ξ
3
)=(2,3,4,5)
T
是AX=0的解.于是,AX=β的通解为 (1,2,3,4)T+c(2,3,4,5)
T
,c可取任何常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/8ak4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为导出y=y(x)满足的微分方程和初始条件;
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形.并写出所用坐标变换.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,求矩阵A;
设D={(x,y)|x2+y2≤1},证明不等式
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
求椭圆所围成的公共部分的面积.
随机试题
女,45岁。突发剑突下绞痛,局部压痛,肌紧张,伴寒战、高热,黄疸12小时。该患者首选的治疗原则是
药品生产企业终止生产药品或者关闭的,《药品生产许可证》
下列有关含氯消毒剂的使用方法正确的是
A、 B、 C、 D、 E、 C
房室瓣关闭主要是由于
“孟母三迁”体现的德育方法是()
行政处罚包括以下形式()。
题干可以转换成()。
赶路的人,为了远方的目标,无意留心沿路的风光。许多其实并不比你追寻的东西逊色的路边风物,被你轻易地忽略过去了,待我们多年后明白过来时,已追悔莫及,而当你把赶路的心态转换成散步的心态,你就会发觉,得到有味,失去也有味;富有有味,清贫也自有味,失败也有味;热恋
设tany=x+y,则dy=________.
最新回复
(
0
)