首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)0,令an= ∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
设f(x)在[1,+∞)内可导,f’(x)0,令an= ∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
admin
2019-06-28
55
问题
设f(x)在[1,+∞)内可导,f’(x)<0且
=a>0,令a
n
=
∫
1
n
f(x)dx.证明:{a
n
}收敛且0≤
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx=f(n+1)-f(ξ)≤0(ξ∈[n,n+1]), 所以{a
n
}单调减少. 因为a
n
=[*][f(k)-f(x)]dx+f(n),而∫
k
k+1
[f(k)-f(x)]dx≥0(k=1,2,…,n-1) 且[*],所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]存在. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8dV4777K
0
考研数学二
相关试题推荐
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
I(χ)=在区间[-1,1]上的最大值为_______.
设具有二阶连续导数,则=_____________.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。证明:r(A)=2;
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an=f(k)-∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。(Ⅰ)试求曲线L的方程;(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(x,y)=0所围成的图形绕直线y=-1旋转所成旋转体的体积。
设D是由曲线y=x1/3,直线x=a(a>0)及x轴所围成的平面图形。Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积。若Vy=10Vx,求a的值。
随机试题
无痛性腮腺肥大,如果是单侧的,应该与下列哪一种疾病相鉴别:
公路工程初步勘察阶段,冲刷工程、导流工程可采用挖探、钻探等方法,勘探深度应至最大冲刷线或基础持力层以下的稳定地层中不小于()m。
我国商业银行现行的按照贷款余额()提取的贷款呆账准备金相当于普通准备金。
下列各项中,属于事件性质的法律事实是()。
有一个文件系统如图7—2所示。其中的方框表示目录,椭圆圈表示普通文件。根目录常驻内存,目录文件组织成链接文件,不设文件控制块,普通文件组织成索引文件。目录表目指示下一级文件名及其磁盘地址(各占2B,共4B)。若下级文件是目录文件,指示其第一个磁盘块地址。若
选出下列文化常识的有关内容。秀才、举人、贡士、进士依次是封建社会科举考试中______、______、______、______的合格者。
森达集团规定,它的下属连锁分店,年营业额超过800万元的,雇员可获得优秀奖。年终统计显示,该集团所属14个连锁分店,其中7个年营业额超过800万元,其余的不足500万元。森达集团又规定,只有年营业额超过500万元的,雇员才能获得激励奖。如果上述断
Itisoftenclaimedthatwomenhaveachievedgreaterfreedomandhaveaccesstothesameopportunitiesasmen.Thepiechartsbe
Thedestructionofournaturalresourcesandcontaminationofourfoodsupplycontinuetooccur,largelybecauseoftheextreme
Wouldyoubehappierifyouspentmoretimediscussingthestateoftheworldandthemeaningoflife—andlesstimetalkingabou
最新回复
(
0
)