首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
admin
2018-04-18
52
问题
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
选项
答案
令f(x)=arctanx-ax,由[*] 由[*]为f(x)的最大点, 由[*]得方程arctanx=ax在(0,+∞)内有且仅有唯一实根,位于[*]内.
解析
转载请注明原文地址:https://kaotiyun.com/show/8jk4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
设函数问函数f(x)在x=1处是否连续?若不连续,修改函数在x=1处的定义使之连续.
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为α2=(-1,0,1)T,α3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
证明显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且[*]故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
求极限
随机试题
急性心肌梗死机械并发症的最佳诊断方法是
CT对比剂注射方法中,比较适用于头颅CT扫描的方法是
患者,女性,68岁,2天前开始出现里急后重,大便日行8~10次,肛门灼热,赤多白少,舌红苔黄,脉数。治宜选用
功善清肺止咳,降逆止呕的药物是()
在以招标方式订立合同时,下列哪种行为属于要约性质?
民用建筑中的变配电所,从防火安全角度考虑,一般应采用断路器的形式()。
关于混凝土施工的说法,正确的有()。
下列各项中标点符号使用正确的是()
()被誉为“中国近代最好的、最伟大的一位新闻记者”。
高级神经活动类型学说认为描述神经活动的维度包括
最新回复
(
0
)