首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为正交矩阵,且|A|=一1,证明:λ=一1是A的特征值。
设A为正交矩阵,且|A|=一1,证明:λ=一1是A的特征值。
admin
2019-01-19
131
问题
设A为正交矩阵,且|A|=一1,证明:λ=一1是A的特征值。
选项
答案
要证λ=一1是A的特征值,需证|A+E|=0。 因为|A+E|=|A+A
T
A|=|(E+A
T
)A|=|E+A
T
||A|=一|A+E|,所以|A+E|=0,故λ=一1是A的特征值。
解析
转载请注明原文地址:https://kaotiyun.com/show/8nP4777K
0
考研数学三
相关试题推荐
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换χ=Oy,把f(χ1,χ2,χ3)化成标准形;(Ⅲ)求方程f(χ1,χ2,χ3)=0
设二次型f(χ1,χ2,χ3)=χ12+χ22+aχ32+2bχ1χ2-2χ1χ3+2χ2χ3(b<0)通过正交变换化成了标准形f=6y12+3y22-2y12.求a、b的值及所用正交变换的矩阵P.
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
设从一总体中抽得样本观测值为:5,3,4,5,6,2,5,3.试写出其样本经验分布函数F*(χ).
若向量组α1=(1,-a,1,1)T,α2=(1,1,-a,1)T,α3=(1,1,1,-a)T线性无关,则实数a的取值范围是_______.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=(1,1,1)T,ξ2=(1,2,4)T,ξ3=(1,3,9)T,又β=(1,1,3)T(1)将向量β用ξ1,ξ2,ξ3线性表出;(2)求Anβ(n
设随机变量X与Y相互独立,且X服从区间(0,1)上的均匀分布,Y服从参数为1的指数分布.(I)求概率P{X+Y≤1);(Ⅱ)令求Z的概率密度fZ(z).
已知函数y=y(x)满足关系式y’=x+y,且y(0)=1.试讨论级数的敛散性.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维-林德伯格中心极限定理,当n充分大时Sn近似服从正态分布,只要X1,X2,…,Xn。
随机试题
如果说中小学奥数火爆程度还在预料之中,那么幼儿园级别的奥数火爆程度可能会让无数人大跌眼镜。时下,越来越多的家长开始把还在读幼儿园的孩子送进奥数课堂。当然,奥数的新名字变成了“思维训练”。翟女士有个五岁半的女儿,九月开学就要上幼儿园大班了。最近翟女士的内心十
临界区是指
对厌氧菌感染者,用何种溶液冲洗伤口和湿敷。()
女性,55岁。右耳垂下无痛性肿块逐渐缓慢长大6年。触诊肿块界线清楚,活动,约4cm×5cm大小,表面呈结节状,中等硬度,与皮肤无粘连治疗该病最不宜采用的方法是
下列选项中,疗效高、生效快、控制疟疾症状的药物应首选
下列叙述正确的是()。该批货物申请《进口货物免征税证明》时以下叙述正确的是()。
电子工业增长景气指数最高的年月份为()。根据上图,下列说法正确的是()。
将十六进制数1ABH转换为十进制数是
Ahouseisthemostexpensivethingmostpeoplewilleverbuy.Veryfewpeoplehaveenoughmoneyoftheirowntobuyahome,so
ThereisnothingnewaboutTVandfashionmagazinesgivinggirlsunhealthyideasabouthowthintheyneedtobeinordertobec
最新回复
(
0
)