首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
admin
2019-01-15
91
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y
’’
+a
1
(x)y
’
+a
2
(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y
’’
+a
1
(x)y
’
+a
2
(x)y=f(x)的三个线性无关解,所以φ
1
(x)-φ
3
(x),φ
2
(x)-φ
3
(x)为所对应齐次方程y
’’
+a
1
(x)y
’
+a
2
(x)y=0的两个线性无关解。
根据非齐次线性方程通解的结构,方程y
’’
+a
1
(x)y
’
+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
3
(x),
也就是C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1。故选D。
转载请注明原文地址:https://kaotiyun.com/show/8oP4777K
0
考研数学三
相关试题推荐
(09年)设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(97年)在经济学中,称函数Q(χ)=为固定替代弹性生产函数,而称函数=AKδL1-δ为Cobb-Douglas生产函数,(简称C-D生产函数).试证明:当χ→0时,固定替代弹性生产函数变为C-D生产函数,即有
(95年)设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量,(产品的产量),Q(P)是单调减函数.如果当价格为P0,对应产量为Q0时,边际收益=a>0,收益对价格的边际效应=c<0.需求对价格的弹性为Ep=b>1,求P0和
(04年)设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y);(Ⅲ)X=X2+Y2的概率分布.
(00年)设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Aχ=0和(Ⅱ):ATAχ=0,必有【】
(88年)讨论级数的敛散性.
(16年)求幂级数的收敛域及和函数.
(90年)向量组α1,α2,…,αs,线性无关的充分条件是【】
(87年)下列广义积分收敛的是【】
判定下列级数的敛散性(1)_______;(2)_______;(3)_______;(4)_______.
随机试题
简述公共关系的协调沟通职责。
证券上市
肝对激素的灭活功能减弱会产生什么后果?
维生素D缺乏性手足搐搦症惊厥发作时,下列处理原则哪项是正确的
一单色平行光束垂直照射在宽度为1.0mm的单缝上,在缝后放一焦距为2.0m的汇聚透镜。已知位于透镜焦平面处屏幕上的中央明条纹宽度为2.0mm,则入射光波长约为:
铺底流动资金的估算方法可采用()。
关于城市景观系统规划实施管理的建议中,()是不合适的。
原始凭证是对经济业务按其性质加以归类,确定会计分录,并据以登记会计账簿的凭证。()
在Word文档编辑中绘制椭圆时,若按住______键后左拖动可以画出一个正圆形。
斯腾伯格的短时记忆提取实验表明短时记忆中项目的提取是()。
最新回复
(
0
)