首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Aχ=0和(Ⅱ):ATAχ=0,必有 【 】
(00年)设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Aχ=0和(Ⅱ):ATAχ=0,必有 【 】
admin
2017-05-26
61
问题
(00年)设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ):Aχ=0和(Ⅱ):A
T
Aχ=0,必有 【 】
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
答案
A
解析
若向量X满足方程组AX=0,两端左乘A
T
,得A
T
AX=0,即X也满足方程组A
T
AX=0,故AX=0的解都是A
T
AX=0的解.
反之,若X满足A
T
AX=0,两端左乘X
T
,得X
T
A
T
AX=0,即(AX)
T
(AX)=0,或‖AX‖
2
=0,故AX=0,即X也满足方程组AX=0,故A
T
AX=0的解都是AX=0的解
由以上两方面,说明方程组(Ⅰ)与(Ⅱ)是同解的,故A正确.
转载请注明原文地址:https://kaotiyun.com/show/R3H4777K
0
考研数学三
相关试题推荐
极限=__________.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设a0=1,a1=7/2,an+1=-(1+(1/n+1))an,n≥2,证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
设平面区域D={(x,y)|x3≤y≤1,一1≤x≤1},f(x)是定义在[一a,a](a≥1)上的任意连续函数,则=______________.
求级数的收敛域.
画出积分区域,把积分表示为极坐标形式下的二次积分,其中积分区域D为:(1)1≤x2+y2≤4;(2)x+y≤1,x≥0,y≥0;(3)x2+y2≤2y;(4)x2+y2≤2(x+y);(5)2x≤x2+y2≤4;(6)x2≤
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设f(x)为恒大于零的可微函数,当时,恒有f’(x)sinx<f(x)cosx则当时,下列不等式恒成立的是
n为给定的自然数,极限=____________.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
随机试题
Frenchfries,washeddownwithapintofsoda,areafavoritepartoffast-foodlunchesanddinnersformillionsofAmericanyou
古希腊美学的核心是________。柏拉图的________和________,亚里士多德的________。
在不同的组织结构中,管理者在时间、竞争和成本方面的压力不同,压力越大,越有可能降低伦理标准。
下述情况中,属于自身调节的是
【背景资料】某工程基础为整体筏板,地下2层、地上12层、裙房4层,钢筋混凝土全现浇框架-剪力墙结构,由某施工单位施工,施工过程中发生了以下事件:场地平整结束后,施工单位进行了工程定位和测量放线,然后进行土方开挖工作。基坑采取大放坡开挖,
某混凝土工程,目标成本为364000元,实际成本为383760元。根据表1F420154—1相关资料进行项目成本分析。该工程施工项目成本差异是多少?
关于会计核算的表述,正确的是()
审计机关应当自收到审计报告之日起()内,将审计意见书和审计决定送达被审计单位和有关单位。
庆祝香港回归祖国______周年大会暨香港特别行政区第三届政府就职典礼于2007年7月1日在香港隆重举行。
Whendidthemancallthewomanlasttime?
最新回复
(
0
)