首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设正数列{an}满足a1=a2=1,an=an-1+a2,n=3,4,5,…,且 已知某常数项级数的部分和为Sn=(1/2)+(1/22)+(2/23)+(3/24)+(5/25)+(8/26)+(13/27)+(an-1/2n-1)+(an/2n
设正数列{an}满足a1=a2=1,an=an-1+a2,n=3,4,5,…,且 已知某常数项级数的部分和为Sn=(1/2)+(1/22)+(2/23)+(3/24)+(5/25)+(8/26)+(13/27)+(an-1/2n-1)+(an/2n
admin
2021-04-16
73
问题
设正数列{a
n
}满足a
1
=a
2
=1,a
n
=a
n-1
+a
2
,n=3,4,5,…,且
已知某常数项级数的部分和为S
n
=(1/2)+(1/2
2
)+(2/2
3
)+(3/2
4
)+(5/2
5
)+(8/2
6
)+(13/2
7
)+(a
n-1
/2
n-1
)+(a
n
/2
n
)(n≥1)
(1)证明此级数收敛;
(2)求出此级数的和S。
选项
答案
(1)设级数的通项为b
n
则b
n
=S
n
-S
n-1
=a
n
/2
n
(n≥2),b
1
=a
1
/2,说明级数为正项级数,因为 [*] 由正项级数的比值判别法可知级数[*]收敛。 (2)因为S=1/2+1/2
2
+2/2
3
+3/2
4
+5/2
5
+8/2
6
+13/2
7
+…+a
n-1
/2
n
+a
n
/2
n
+…,(1/2)S =1/2
2
+1/2
3
+2/2
4
+3/2
5
+5/2
6
+8/2
7
+13/2
8
+…+a
n-1
/2
n
+a
n
/2
n+1
+…, 二式相减,得 (1/2)S=1/2+1/2
2
(1/2+1/2
2
+2/2
3
+3/2
4
+5/2
5
+…+a
n-1
/2
n
+a
n
/2
n
+…)=1/2+(1/4)S,因此,级数的和S=2。
解析
转载请注明原文地址:https://kaotiyun.com/show/8px4777K
0
考研数学三
相关试题推荐
[*]
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0,试证函数在[0,+∞)上连续且单调不减(其中n>0).
微分方程y’=(1一y2)Tanx满足y(0)=2的特解为y=___________.
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f"'(ξ)=9.
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
假设随机变量X服从指数分布,则随机变量Y=min{X,2}的分布函数
设随机变量x的密度函数为f(x)=,则概率P{λ<X<λ+a}(a>0)的值()
在函数中当x→0时极限f(x)不存在的是
设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间内()
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
随机试题
氧气对于高等植物来说是________。
硫酸链霉素的检查项目有()
破产人所欠税款的清偿顺序在破产人所欠职工的工资和医疗、伤残补助、抚恤费用之前。()
银行业从业人员在业务活动中,为了赢得客户的信赖,可以向客户暗示规避外汇监管的规定。()
假设某欧式看涨期权目前股价为4.6元,期权的行权价为4.5元,期限为1年,股价年波动率为0.3,无风险利率为6%,则该看涨期权的价值为()元。(已知累积正态分布表N(0.42)=0.6628,N(0.12)=0.5478)
请认真阅读下列材料,并按要求作答。问题:简要分析歌曲的特点。
下列语句没有错误的是()。
小明家与学校相距6千米。每天小明都以一定的速度匀速骑自行车去学校,恰好在上课前5分钟赶到。这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到了学校。已知小明提速后的速度是平时的1.5倍,那么小明平时骑车的速度是每小时多少千米?(
Industrialism,atleastwithinourexperienceofitformorethan200years,never【B1】______apointofequilibriumoralevel
TestshaveconfirmedthatfourpeopleinWisconsincontractedthemonkeypoxvirusaftercomingintoclosecontactwithpetprair
最新回复
(
0
)