首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=xe1—xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1一)f(ξ)成立。
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=xe1—xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1一)f(ξ)成立。
admin
2019-06-06
60
问题
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=
xe
1—x
f(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1一
)f(ξ)成立。
选项
答案
[*] 故kf(1)=kηe
1—η
f(η),即f(1)=ηe
1—η
f(η)。 再令φ(x)=xe
1—x
f(x),则φ(0)=0,φ(1)=f(1),所以φ(1)=f(1)=φ(η),由罗尔定理可知,存在ξ∈(η,1)[*](0,1),使得φ’(ξ)=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8qV4777K
0
考研数学二
相关试题推荐
设z=
设a<b,证明:不等式[∫abf(x)g(x)dx]≤∫abf2(x)dx∫abg2(x)dx.
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f〞(χ)|≤.
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,f(x)dx=0,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
设产品的需求函数和供给函数分别为Qd=14-2P,Qs=-4+2P若厂商以供需一致来控制产量,政府对产品征收的税率为t,求:(1)t为何值时.征税收益最大,最大值是多少?(2)征税前后的均衡价格和均衡产量.
设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α=(-1,2,4,a+8)T.求方程组(Ⅰ)的一个基础解系;
设f(χ)在[0,1]上二阶可导,且|f〞(χ)|≤1(χ∈[0,1]),又f(0)=f(1),证明:|f′(χ)|≤(χ∈[0,1]).
x=φ(y)是y=f(x)的反函数,f(x)可导,且,f(0)=3,求φ"(3).
讨论方程axex+b=0(a>0)实根的情况.
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
随机试题
亚里士多德认为悲剧的作用在于【】
下列各项中,不宜针刺的是
变形链球菌的重要生物学特征如下,除外
1.背景某机场水泥混凝土道面施工结束后不久,就开始了标志线的施工。施工所用的油漆为丙烯酸类道路标线漆,选用的画线设备为手推式画线机。2.问题个别线条出现起皮。
课堂导入方式多种多样。教师先提出符合学生认知水平的、形式多样的、富有启发性的问题,引学生回忆、联想或渗透学习目标的主题,激发学生的学习动机和情趣。
隐形
有一种木马程序,其感染机制与U盘病毒的传播机制完全一一样,只是感染目标计算机后它会尽量隐藏自己的踪迹,它唯一的动作是扫描系统的文件,发现对其可能有用的敏感文件,就将其悄悄拷贝到U盘,一旦这个U盘插入到连接互联网的计算机,就会将这些敏感文件自动发送到互联网上
CarThievesCouldBeStoppedRemotely(遥远地)Speedingoff(超速行驶)inastolencar,thethiefthinkshehasgotagreatcatch.But
Whyaretravelersexperiencingmorestressthaneverastheycheckinattheairport?
______studiesthetotalstockofmorphemesofalanguage,especiallythoseitemswhichhaveclearsemanticreferences.
最新回复
(
0
)