首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=__________。
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=__________。
admin
2020-02-28
71
问题
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=__________。
选项
答案
2
2n-r
解析
由于A为n阶实对称正交矩阵,所以A可以相似对角化,且|A|=±1。
由A可以相似对角化可知,存在可逆矩阵P,使得
P
﹣1
AP=diag(1,1,…,1,﹣1,﹣1,…,﹣1),
其中1有r个,﹣1有n-r个。
所以|3E-A|=|P(3E-P
﹣1
AP)P
﹣1
|=|P||3E-P
﹣1
AP||P
﹣1
|=|3E-P
﹣1
AP|,注意到3E-P
﹣1
AP是对角矩阵,对角线上有r个2,n-r个4,所以
|3E-A|=2
r
4
n-r
=2
2n-r
。
转载请注明原文地址:https://kaotiyun.com/show/8xA4777K
0
考研数学二
相关试题推荐
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=Λ。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求矩阵A的特征值与特征向量;
证明:若A为n阶可逆方阵,A*为A的伴随矩阵,则(A*)T=(AT)*.
已知是矩阵的一个特征向量。[img][/img]问A能不能相似对角化?并说明理由。
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.求A的全部特征值;
设z=f(x2+y2+z2,xyz)且f一阶连续可偏导,则=_______
随机试题
产于湖北赵李桥茶厂的是花砖茶。()
男,36岁。反复乏力、恶心、纳差3年,明确诊断为慢性乙型病毒性肝炎,肝功时有波动。10天前因参加麦收而过于劳累,近1周来感高度乏力、食欲不振,伴恶心、呕吐、腹胀、尿黄,皮肤、巩膜黄疸进行性加深。化验:肝功TBIL342/μmol/L,DBIL170μmol
既为防水材料义兼为屋面结构的是( )。
适用于酸碱性环境的非金属风管系统是()。
控制设备安装标高的常用测量仪器是()。
劳动年龄外人口包括()。
下列各项中关于会计账簿的基本内容中,说法正确的有()。
2008年上半年,全社会固定资产投资68402亿元,同比增长26.3%。其中,城镇固定资产投资58436亿元,同比增长26.8%;农村固定资产投资9966亿元,同比增长23.2%。在城镇投资中,国有及国有控股投资23554亿元,同比增长19.
对直销商品和库存商品进行概括,给出超类和子类,填入图3-5中(a)处所示的虚线框内,并补充联系。根据你的实体联系图,完成(b)处的商品关系模式,并增加子类型的实体关系模式。
Humanbeingsdifferfromanimals______theycanuselanguageasatooltocommunicatewitheachother.
最新回复
(
0
)