求a,b及可逆矩阵P,使得P-1AP=B.

admin2019-02-23  34

问题 求a,b及可逆矩阵P,使得P-1AP=B.

选项

答案由|λE-B|=0,得λ1=-1,λ2=1,λ3=2,因为A~B,所以A的特征值为λ1=-1,λ2=1,λ3=2. 由tr(A)=λ1+λ2+λ3,得a=1,再由|A|=b=λ1λ2λ3=-2,得b=-2, 即A=[*] 由(-E-A)X=0,得ξ1=(1,1,0)T; 由(E-A)X=0,得ξ2=(-2,1,1)T; 由(2E-A)X=0,得ξ3=(-2,1,0)T, [*] 由(-E-B)X=0,得η1=(-1,0,1)T; 由(E-B)X=0,得n2=(1,0,0)T; 由(2E-B)X=0,得η3=(8,3,4)T, [*] 由P1-1AP1=P2-1BP2,得(P1P2-1)-1AP1P2-1=B, 令P=P1P2-1=[*], 则P-1AP=B.

解析
转载请注明原文地址:https://kaotiyun.com/show/yej4777K
0

最新回复(0)