首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
admin
2019-02-23
58
问题
求二元函数z=f(x,y)=x
2
y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
选项
答案
由方程组[*]得线段x=0(0≤y≤6)及点(4,0),(2,1).而点(4,0)及线段x=0(0≤y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点.又 f"
xx
=8y一6xy一2y
2
,f"
xy
=8x一3x
2
—4xy,f"
yy
=一2x
2
在点(2,1)处,有 [*] 且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6一x. 代入f(x,y)中得,z=2x
3
一12x
2
(0≤x≤6). 由z’=6x
2
一24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: [*] 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=一64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=一64.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bij4777K
0
考研数学二
相关试题推荐
设φ(x)=,求φ’(x),其中a>0,b>0.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2),其中f可微,求的最简表达式.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
求由曲线χ2=ay与y2=aχ(a>0)所围平面图形的质心(形心)(如图3.35).
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小;
二次型f(x1,x2,x3)=(a1x1+a2x2+ax3x3)(b1x1+b2x2+b3x3)的矩阵为__________。
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
把一硬币连抛三次,以X表示在三次中出现正面的次数,Y表示在三次中出现正面的次数与出现反面次数的差的绝对值,试求(X,Y)的联合概率分布;X、Y的边缘分布及P{X=Y).
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
随机试题
简述编制时间数列的基本原则。
子宫内膜增生症与高分化的子宫内膜腺癌的区别在于有无
A、上颌乳切牙唇面和邻面B、乳磨牙的牙合面C、乳磨牙的邻面D、乳尖牙的唇面和邻面E、下颌乳切牙唇面和邻面4~5岁儿童乳牙龋好发于
确认死亡的重要征象是
A.β受体阻滞剂B.抗血小板聚集剂C.钙离子拮抗剂D.利尿剂E.硝酸盐类
A公司承接某小区的住宅楼和室外工程的机电安装工程。为尽快完成任务,A公司将小区热力管网工程分包给业主指定的B公司,其管材和阀门由A公司采购。B公司承建的热力管网安装工程于第2年10月完成后,得到业主单独验收顺利通过。A公司承建的总体工程也于第3年1月竣工验
技术创新理论要求企业把以下哪个部门看作是企业最重要的部门?()
如果街道上有人打架斗殴。你身为公安民警,着便衣前去制止.却有围观群众以为你是帮凶,你该怎么办?
在人人都有发言权的微博时代,一个不经意的转发和评论,既可能为真相增添力量,也可能不小心成为谣言的帮闲,甚至可能成为他人的灾难。该如何更好地行使自己的话语权,这是一个值得认真对待的问题。近日《中国青年报》有篇文章谈到,一旦被主观偏见、愤怒情绪、不假思索的责骂
Somepeopleexpectedshort-terminterestratestojumpsoonbecausethey______.Theauthor’sattitudetowardGoldmanSachs’so
最新回复
(
0
)