设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向

admin2017-04-19  21

问题 设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?

选项

答案因行列式|α1 α2 α3|=a+1≠0,故当a≠一1时方程组x1α1+x2α2+x3α3i(i=1,2,3)均有解(且有惟一解),所以向量组(Ⅱ)可由(I)线性表示.又由行列式|β1 β2 β3|=6≠0,同理

解析
转载请注明原文地址:https://kaotiyun.com/show/95u4777K
0

最新回复(0)