首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
admin
2019-12-26
59
问题
确定常数a使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(-2,a,4)
T
,β
3
=(-2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
【解法1】 记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故r(A)<3,从而 |A|=-(a-1)
2
(a+2)=0,所以a=1或a=-2. 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
,可由β
1
,β
2
,β
3
线性表示,但β
2
=(-2,1,4)
T
不能由α
1
, α
2
,α
3
线性表示,所以a=1符合题意. 当a=-2时,由于 [*] 考虑线性方程组Bx=α
2
,因为r(B)=2,r(B,α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,与题设矛盾.因此a=1. 【解法2】 记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),对矩阵(A,B)施行初等行变换: [*] 由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故r(A)<3,因此a=1或a=-2. 当a=1时, [*] 考虑线性方程组Ax=β
2
,由于r(A)=1,r(A,β
2
)=2,故方程组Ax=β
2
无解,所以β
2
不能由α
1
,α
2
,α
3
线性表示.另一方面,由于|B|=-9≠0,故Bx=α
i
(i=1,2,3)有唯一解,即α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,所以a=1符合题意. 当a=-2时, [*] 考虑线性方程组Bx=α
2
, [*] 由于r(B)=2,r(B,α
2
)=3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,与题设矛盾.因此a=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/9GD4777K
0
考研数学三
相关试题推荐
设A为n阶非零方阵,且|A|=0,则|A*|=_______.
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x一y|.证明:∫abf(x)dx一(b一a)f(a)≤(b一a)2.
求微分方程y"+2y’一3y=(2x+1)ex的通解.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=______,|B|=______.
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是_______.
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
设的值为______.
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2___________.
设若f(x)处处连续,求a,b的值;
随机试题
A.加快补液速度,充分补液B.适当补液C.使用强心药D.舒张血管E.补液试验休克患者中心静脉压及血压均低时
A.免疫调节B.免疫调理C.免疫抑制D.打破免疫耐受E.建立免疫耐受先天免疫缺陷是
世界各国政府对本国咨询业常采取()等扶持政策。
借贷记账法的特点有()。
关于质量认证制度,下列说法错误的是()。
举一反三,触类旁通等是典型的______形式。
设二维随机变量(X,Y)的分布函数为V(x,y),已知X=Y,且都服从标准正态分布.如有F(a,b)=,则
用C语言编写的代码______。
A、TherootofJim’shealthproblems.B、Thewoman’sproblemswithherworkaholicprofessor.C、Jim’srelationshipwithhisprofess
A、WelearnedthatMaryisgoingtoHawaii.B、WelearnedthatMaryhastraveledallovertheworld.C、WelearnedthatMarylikep
最新回复
(
0
)