首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2一α4,β4=α3+α4,β5=α2+α3. (1)求r(β1,β2,β3,β4,β5); (2)求β1,β2,β3,β4,β5的一个最大无关组
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2一α4,β4=α3+α4,β5=α2+α3. (1)求r(β1,β2,β3,β4,β5); (2)求β1,β2,β3,β4,β5的一个最大无关组
admin
2018-11-20
9
问题
设α
1
,α
2
,α
3
,α
4
线性无关,β
1
=2α
1
+α
3
+α
4
,β
2
=2α
1
+α
2
+α
3
,β
3
=α
2
一α
4
,β
4
=α
3
+α
4
,β
5
=α
2
+α
3
.
(1)求r(β
1
,β
2
,β
3
,β
4
,β
5
);
(2)求β
1
,β
2
,β
3
,β
4
,β
5
的一个最大无关组.
选项
答案
(1)β
1
,β
2
,β
3
,β
4
,β
5
对α
1
,α
2
,α
3
,α
4
的表示矩阵为 [*] 用初等行变换化为阶梯形矩阵: [*] 则r(β
1
,β
2
,β
3
,β
4
,β
5
)=r(C)=3. (2)记C的列向量组为γ
1
,γ
2
,γ
3
,γ
4
,γ
5
.则由(1)的计算结果知γ
1
,γ
2
,γ
4
是线性无关的.又 (β
1
,β
2
,β
4
)=(α
1
,α
2
,α
3
,α
4
)(γ
1
,γ
2
,γ
4
) 得到r(β
1
,β
2
,β
4
)=r(γ
1
,γ
2
,γ
4
)=3,β
1
,β
2
,β
4
线性无关,是β
1
,β
2
,β
3
,β
4
,β
5
的一个最大无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/CuW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f"(ξ)=2.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
已知函数在(一∞,+∞)内连续可导,则().
设X1,X2,…,X7为来自总体X~N(0,1)的简单随机样本,随机变量Y=(X1+X2+X3)2+(X4+X5+X6)2,则当C=________时,服从参数为________的t分布.
设A*为A的伴随矩阵,矩阵B满足A*B一A一1+2B,则B=________.
设随机变量X1~N(0,1),X2~B(1,1/2),X3服从于参数为λ=1的指数分布.设则矩阵A一定是().
假设总体X是连续型随机变量,其概率密度X1,X1,…,Xn是来自总体X的简单随机样本,统计量Yn=n[1一max{X1,X1,…,Xn}]的分布函数为Fn(x).求证Fn(x)一F(x)(一∞<x<+∞),其中F(x)是参数为2的指
设随机变量X的分布函数为对X独立观测3次,则3次结果都不超过1的概率为________.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
随机试题
股骨颈外展型骨折是指Pauwells角
地骨皮的原植物科名是
与便秘发生有关的脏腑有
住房和城乡建设部确认建筑信息化的最佳解决方案是以()技术为核心并作为中国未来建筑信息化的发展方向。
块状绝热制品采用湿砌法紧靠设备及管道外壁进行砌筑,采用的胶结和拼缝的材料是()。
湿陷性黄土路基处理,除采用防止地表水下渗的措施外,主要有()等。
如果注册会计师识别出超出正常经营过程的重大关联方交易导致的舞弊风险,下列程序中,通常能够有效应对该风险的是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
1.在考生文件夹下打开文档WDT31.DOC,其内容如下:【文档开始】篙校科技实力排名由教育部授权,uniranks.edu.cn网站(一个纯公益性网站)6月7日独家公布了1999年度篙校高等学校科技统计数据和全国篙校校办产业统
Gettingacoldorcatchingthefluisacommoncomplaintforpeopleeveryyear.Infact,peopleusuallycatchbetweentwoandfi
最新回复
(
0
)