首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足 Aα3=α2+α3. 证明α1,α2,α3线性无关.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足 Aα3=α2+α3. 证明α1,α2,α3线性无关.
admin
2018-11-20
37
问题
已知α
1
,α
2
都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α
3
满足
Aα
3
=α
2
+α
3
.
证明α
1
,α
2
,α
3
线性无关.
选项
答案
根据特征向量的性质,α
1
,α
2
都是A的特征向量,特征值不相等,于是它们是线性无关的.只用再证明α
3
不可用α
1
,α
2
线性表示. 用反证法.如果α
3
可用α
1
,α
2
表示,设α
3
=c
1
α
1
+c
2
α
2
,用A左乘等式两边,得 α
2
+α
3
=一c
1
α
1
+c
2
α
2
, 减去原式得 α
2
=一2c
1
α
1
, 与α
1
,α
2
线性无关矛盾,说明α
3
不可用α
1
,α
2
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/8uW4777K
0
考研数学三
相关试题推荐
设z=z(x,y)满足证明:
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
设Q为三阶非零矩阵,且PQ=0,则().
求∫02|x一λ|dx(λ不为常数).
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式f’(x)+f(x)一∫0xf(t)dt=0.(1)求导数f’(x);(2)证明:当x≥0时,成立不等式e一x≤f(x)≤1.
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立。Y为中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
随机试题
下列各药中,有小毒,不宜大量服用的是
手指的鹅颈畸形
肠结核结肠癌
仲裁具有( )等特点。
( )是保险公估机构在现场勘查时需要明确的公估依据。
商标侵权:指他人出于商业目的,未经商标所有人的许可而擅自使用其已注册商标,或把他人注册商标的主要部分用作自己的商标,并使用在相同或类似的商品上,从而产生商标混同,以欺骗消费者。下面几种情况中不属于商标侵权的是()。
已知n维向量组α1,α2,…,αs线性无关,则向量组α’1,α’2,…,α’s可能线性相关的是()
Ahundredyearsago,thegamewenowcallfootballdidnotexist.Americanfootballstartedduringagamebetweentwocolleges.
Whenistheguidedtourofthecampusgiven?
Forthispart,youareallowed30minutestowriteashortessayentitledBetterActNowthanLaterbyreferringtothesaying,
最新回复
(
0
)