首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
admin
2018-11-20
65
问题
设n维向量组α
1
,α
2
,…,α
s
线性相关,并且α
1
≠0,证明存在1<k≤s,使得α
k
可用α
1
,…,α
k-1
线性表示.
选项
答案
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
,使得 c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0. 设c
k
是c
1
,c
2
,…,c
s
中最后一个不为0的数,即c
k
≠0,但i>k时,c
i
=0.则k≠1(否则α
1
=0,与条件矛盾),并且有c
1
α
1
+c
2
α
2
+…+c
k
α
k
=0.则于 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AuW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设α是n维单位列向量,A=E一ααT.证明:r(A)<n.
设(x1,x1,…,xn)和(x1,x1,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得是θ的无偏估计量,且在所有这样的线性估计中方差最小.
设随机变量且协方差cov(X,Y)=则X与Y的联合分布为________.
已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P(λ<X<λ+a)(a>0)的值().
设X1,X2,…,Xn,…是相互独立的随机变量序列,Xn服从参数为n(n=1,2,…)的指数分布,则下列不服从切比雪夫大数定律的随机变量序列是().
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1920小时的概率。
设A,B为随机事件,且(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立。Y为中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
随机试题
A.大流行B.散发C.有季节性D.暴发E.流行局部地区,短时间内突然发生许多临床症状相似的患者的是
早期即可有口渴表现的疾病是最早的临床表现是肌无力的疾病是
患儿,男,10个月。采用牛乳喂养,未加辅食,因皮肤、黏膜苍白就诊。诊断为缺铁性贫血,护士对家长健康指导最重要的是
甲公司2013年至2015年对乙公司股票投资的有关资料如下:资料一:2013年1月1日,甲公司定向发行每股面值为1元、公允价值为4.5元的普通股1000万股作为对价取得乙公司30%有表决权的股份。交易前,甲公司与乙公司不存在关联方关系且不持有乙公司股份。
公安机关人民警察因职责紧急需要,可以无条件乘坐交通工具。
Theshirtisarealbargainbecauseitisgoodinqualityand______inprice.
资本主义绝对地租产生的原因是
Choosethecorrectletter,A,BorCWhatdoesthecustomerwantcleanedeverythreemonths?
A、Ithelpsdevelopthegraduates’confidence.B、Itbringsapositiveeffecttojobhunters.C、Itgetsthegraduatesoffthecoac
One______bestruckbyhisenthusiasm.
最新回复
(
0
)