首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T, i=1,2,…,5. 试问:(Ⅰ)α1能否由α2,α3,α4线性表出? (Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
已知线性方程组 的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T, i=1,2,…,5. 试问:(Ⅰ)α1能否由α2,α3,α4线性表出? (Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
admin
2016-10-26
66
问题
已知线性方程组
的通解是(2,1,0,3)
T
+k(1,一1,2,0)
T
,如令α
i
=(a
i
,b
i
,c
i
,d
i
)
T
, i=1,2,…,5.
试问:(Ⅰ)α
1
能否由α
2
,α
3
,α
4
线性表出?
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表出?并说明理由.
选项
答案
(Ⅰ)α
1
可由α
2
,α
3
,α
4
线性表出.因k(1,一1,2,0)
T
是相应齐次方程组Ax=0的通解,则 (α
1
,α
2
,α
3
,α
4
)[*]=0, 即 α
1
-α
2
+2α
3
=0, 所以α
1
=α
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表出. (Ⅱ)α
4
不能用α
1
,α
2
,α
3
线性表出.如果α
4
能用α
1
,α
2
,α
3
线性表出,则 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
)=r(A). 由于Ax=0的基础解系仅一个向量,于是有r(A)=n一1=3.那么,α
1
,α
2
,α
3
线性无关,与α
1
=α
2
-2α
3
相矛盾.
解析
从线性方程组的通解可看出相应齐次方程组的通解,亦可得到列向量组的秩及列向量a
i
之间的联系.
转载请注明原文地址:https://kaotiyun.com/show/9Lu4777K
0
考研数学一
相关试题推荐
[*]
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=().
设随机变量X和Y的联合分布是正方形G={(x,y):1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X—Y|的概率密度p(u).
设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f(0)≠0,若af(h)+by(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.
星形线绕Ox轴旋转所得旋转曲面的面积为_________.
设离散型二维随机变量(X,Y)的取值为(xi,yi)(i,j=1,2),且试求:X与Y的相关系数ρxy;
历史上科学家皮尔逊进行抛掷一枚匀称硬币的试验,他当时掷了12000次,正面出现6019次.现在我们若重复他的试验,试求:抛掷12000次正面出现频率与概率之差的绝对值不超过当年皮尔逊试验偏差的概率;
随机试题
切开复位内固定的缺点有
工艺流程图中设备用粗实线并按比例绘制。 ()
______allhershortcomings,Janegetsalongwellwithhercolleagues.
X线照射到直接FPD上时,X线光子使非晶硒激发出
会计职业道德的特征包括( )。
李建的理想是成为一名优秀的钢琴家,但在一次重要的钢琴比赛中,他没有进入决赛。李建感觉前途渺茫,想放弃自己的理想。心理老师引导他分析了这个错误观念,使其形成了正确的认识,解决了问题。这种心理辅导的方法是()。
有一个小孩,在上中学时,父母曾为他选择文学这条路。只上了一个学期。老师就在他的评语中写下了这样的结论:“该生用功,但做事过分拘礼和死板。这样的人即使有着完善的品德,也决不能在文学上有所成就。”后来,因为化学老师了解到他的这个特点后,就建议他改学化学,因为化
关于法起源的一般规律,下列说法正确的是()
假设一台数码相机一次可拍摄16位色1024×1024的彩色相片共80张,数据压缩比平均是4,则它使用的存储器容量大约是()。
TheUnitedStateshashistoricallyhadhigherratesofmarriagethanthoseofotherindustrializedcountries.Thecurrentannual
最新回复
(
0
)