首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
admin
2017-10-21
35
问题
A是2阶矩阵,2维列向量α
1
,α
2
线性无关,Aα
1
=α
1
+α
2
,Aα
2
=4α
1
+α
2
.求A的特征值和|A|.
选项
答案
先找A的特征向量.由于α
1
,α
2
线性无关,每个2维向量都可以用它们线性表示.于是A的特征向量应是α
1
,α
2
的非零线性组合c
1
α
1
+c
2
α
2
,由于从条件看出α
1
不是特征向量,c
2
不能为0,不妨将其定为1,即设η=cα
1
+α
2
是A的特征向量,特征值为A,则Aη=λη,Aη=A(cα
1
+α
2
)=c(α
1
+α
2
)+4α
1
+α
2
=(c+4)α
1
+(c+1)α
2
,则(c+4)α
1
+(c+1)α
2
=A(cα
1
+α
2
),得c+4=ac,c+1=λ.解得c=2或一2,对应的特征值A分别为3,一1.|A|=一3.
解析
转载请注明原文地址:https://kaotiyun.com/show/9dH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得.
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
,求A的全部特征值,并证明A可以对角化.
随机试题
肌腔隙与血管腔隙位于()
低温用钢如奥氏体材料焊接时,焊缝中的()裂纹是一个普遍问题。
风、云、雷、雨神的祭祀,属于古代的【】
外存中的数据可以直接进入CPU被处理。()
主动脉瓣关闭不全不出现哪种表现
()①“三变”改革探索扶贫经验②各省大力实施精准扶贫战略③“三变”改革模式得到省市领导批示④省委政策研究室调研⑤召开会议总结推广“三变”改革经验
“法兰西人正在为全人类的神圣权利而战斗。——拿破仑”对此战斗评价客观的是()。
请对下面这篇文章的思想内容和艺术特点做简要说明,然后为这篇课文设计一个完整的教学简案。郑伯克段于鄢左丘明
下列关于宽带城域网汇聚层基本功能的描述中,错误的是()。
A、害怕B、惊讶C、温暖D、心烦C说话人说“我心里顿时涌起一股暖流”,所以选择C。
最新回复
(
0
)