首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3 经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设二次型 f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3 经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
admin
2021-02-25
73
问题
设二次型
f=x
2
1
+x
2
2
+x
2
3
+2αx
1
x
2
+2βx
2
x
3
+2x
1
x
3
经正交变换x=Py化成f=y
2
2
+2y
2
3
,其中x=(x
1
,x
2
,x
3
)
T
和y=(y
1
,y
2
,y
3
)
T
都是3维列向量,P是3阶正交矩阵.试求常数α,β.
选项
答案
二次型f(x
1
,x
2
,x
3
)的矩阵为 [*] 因为P为正交矩阵,所以 [*] 即A与B相似,故A与B有相同的特征值λ
1
=0,λ
2
=1,λ
3
=2,这些特征值满足|λE—A|=0. 当λ
1
=0,则 [*] 当λ
2
=1,则 [*] 由式(1)和(2),可求得α=β=0. 注:本题可用特征值的性质和特征方程求得α,β如用|A|=0×1×2=0.|E-A|=0.
解析
本题主要考查二次型在正交变换下的不变量.令二次型f(x
1
,x
2
,x
3
)的矩阵为A,由标准形为f=y
2
2
+
2y
2
3
,知A的特征值为0,1,2,代入A的特征方程,求得α,β.
转载请注明原文地址:https://kaotiyun.com/show/9e84777K
0
考研数学二
相关试题推荐
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点。求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
求函数f(χ)=(2-t)e-tdt的最值.
设A为3阶方阵,A*是A的伴随矩阵,A的行列式,求行列式|(3A)-1=2A*|的值.
求椭圆所围成的公共部分的面积.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
设f(χ)在χ=0的某邻域内有连续的一阶导数,且f′(0)=0,f〞(0)存在.求证:
设n阶行列式Dn=,求Dn完全展开后的n!项中正项的总数。
设n阶方阵A的,n个特征值全为0,则().
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
电化学保护是利用()的这一原理来抑制金属腐蚀的发生。
Cushingulcer是指由下列哪种原因引起者()(1999年)
A.白喉杆菌B.结核分枝杆菌C.霍乱弧菌D.肺炎链球菌E.炭疽芽胞杆菌菌体细长弯曲,革兰染色阳性,亚甲蓝染色可见菌体内有异染颗粒的细菌是
主治肾虚阳痿及虚寒便秘的药物是()
当仲裁庭由3名仲裁员组成时,其中首席仲裁员应由()。
甲是一家股份公司的董事,那么根据公司法的规定,甲的任期最长为()年。
下列哪一项不属于宪法规定的公民的基本权利?()
性染色体:X染色体:Y染色体
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
1.在指定文件夹下打开文档WT04.DOC,其内容如下:【文档开始】孔龙灭绝新传说据报道,科学家普遍认为,曾有一颗体积巨大的天体坠落在地球上,导致孔龙和其他许多动物灭绝。不过,最新研究表明,孔龙灭绝是遭受天上地下双重打击所致。
最新回复
(
0
)