首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3 经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设二次型 f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3 经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
admin
2021-02-25
107
问题
设二次型
f=x
2
1
+x
2
2
+x
2
3
+2αx
1
x
2
+2βx
2
x
3
+2x
1
x
3
经正交变换x=Py化成f=y
2
2
+2y
2
3
,其中x=(x
1
,x
2
,x
3
)
T
和y=(y
1
,y
2
,y
3
)
T
都是3维列向量,P是3阶正交矩阵.试求常数α,β.
选项
答案
二次型f(x
1
,x
2
,x
3
)的矩阵为 [*] 因为P为正交矩阵,所以 [*] 即A与B相似,故A与B有相同的特征值λ
1
=0,λ
2
=1,λ
3
=2,这些特征值满足|λE—A|=0. 当λ
1
=0,则 [*] 当λ
2
=1,则 [*] 由式(1)和(2),可求得α=β=0. 注:本题可用特征值的性质和特征方程求得α,β如用|A|=0×1×2=0.|E-A|=0.
解析
本题主要考查二次型在正交变换下的不变量.令二次型f(x
1
,x
2
,x
3
)的矩阵为A,由标准形为f=y
2
2
+
2y
2
3
,知A的特征值为0,1,2,代入A的特征方程,求得α,β.
转载请注明原文地址:https://kaotiyun.com/show/9e84777K
0
考研数学二
相关试题推荐
证明:当0
求极限:
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C.若α1,α2,…,αs线性无关,证明:r(β1,β2,…,βt)=r(C).
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β不可由α1,α2,α3线性表出;
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。当L与直线y=ax所围成平面图形的面积为时,确定a的值。
设A为3阶方阵,A*是A的伴随矩阵,A的行列式,求行列式|(3A)-1=2A*|的值.
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=________。
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α1,α2,2α2),则P-1AP=________。
已知,且f(0)=g(0)=0,试求
随机试题
甲、乙通过丙向丁购买了毒品,甲购买的目的是为了自己吸食,乙购买的目的是为了贩卖,丙则通过介绍毒品买卖,从丁处获得一定的好处费。对于本案,下列选项中正确的有()。
下列属于我国高等学校设立条件的是()
关于结核性腹膜炎,下列哪项是错误的
卡他性炎是指
奶牛发热、干咳、腹式呼吸,眼睑及鼻腔流出脓性分泌物。分泌物接种含10%马血清的马丁琼脂,7天长出“煎荷包蛋状”菌落。该牛感染的病原可能是
A、躯体依赖性B、首剂现象C、耐药性D、耐受性E、致敏性反复使用某种抗生素后细菌可产生( )。
以下事业单位会计的特点中正确的是()。
活着与生活①有位朋友曾经说过一句话,开始听起来并没有在意,后来仔细想想,还有道理,他说,人分两种:一种是活着的人,另一种是生活的人。②活着的人,指的是什么?恐怕仅仅就是指活着吧。有说有笑,有苦有悲,但没有精神上的追求。有呼吸,有面孔,但没有
相邻关系是指相互毗邻的()所有人或使用人之间基于所有权或使用权的行使而发生的权利义务关系。
设f(x)连续,且f(0)=0,f’(0)=2,则
最新回复
(
0
)