首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
admin
2019-07-22
107
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
选项
答案
必要性A是正交矩阵←→AA
T
=E,则|A|=±1. 若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
; 若|A|=一1,则AA
*
=|A|E=一E,A(一A
*
)=E,而已知AA
T
=E,从而有一A
*
=A
T
,即a
ij
=一A
ij
. 充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=一1,且a
ij
=一A
ij
时,一A
*
=A
T
,AA
*
=|A|E=一E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/vGN4777K
0
考研数学二
相关试题推荐
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程.y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
(1)设χ≥-1,求∫-1χ(1-|t|)dt.(2)设f(χ)=,求.
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r(α1,α2,…,αn,α,β1,β2,…,βn,β)=r,则()
设f(χ)二阶连续可导,且f(0)=f′(0)=0,f〞(0)≠0,设u(χ)为曲线y=f(χ)在点(χ,f(χ))处的切线在χ轴上的截距,求.
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
设f(x)在(-∞,+∞)连续,存在极限证明:(Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
(91年)利用导数证明:当x>1时,有不等式
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
随机试题
已知某厂生产的一种元件,其寿命服从均值μ0=100,方差σ02=25的正态分布,现采用一种新工艺生产该种元件,并随机抽取25个元件,测得样本均值=105,从生产情况看,寿命波动无变化,试判断采用新工艺生产的元件平均寿命较以往有无显著变化。(α=0.05,μ
一横波的波动方程足y=2×10-2cos2π(10t-)(SI),t=0.25s时,距离原点(x=0)处最近的波峰位置为:
在长管水力计算中,()。[2017年真题]
智力素质是获得知识和运用知识的能力,包括()等。
《关于建立派驻城乡规划督察员制度的指导意见》(建规[2005]81号)中明确规定,城乡规划督察员要重点督察的主要内容为()
学习行业先进创一流践行群众路线争先锋据河南旅游咨询网报道:为进一步提高党的群众路线教育实践活动效果,践行局党组提出的全省旅游行业向云台山风景名胜区管理局学习的决定,使党员干部更加准确把握学习的基本内容和精神实质,9月27日至28日,省旅游局局长寇
教师备课时一般要做好三项工作,即()。
符合规定产地及生产规范要求的农产品可以依照有关法律或者行政法规的规定申请使用()。
下列关于1,25-(OH)2-D3的叙述,哪项是不正确的
Sevenyearsago,whenIwasvisitingGermany,Imetwithanofficialwhoexplainedtomethatthecountryhadaperfectsolution
最新回复
(
0
)