首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2019-06-09
55
问题
设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
A的特征多项式为 [*] =(λ一2)(λ
2
一 8λ+18+3a). (1)若λ=2是f(λ)的二重根,则有(λ
2
—8λ+18+3a)|
λ=2
=2
2
一16+18+3a=3a+6=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵2E一A=[*]的秩为1,故对应于二重特征值2的线性无关特征向量有两个,从而A可相似对角化. (2)若λ=2不是r(A)的二重根,则λ
2
一 8λ+18+3a为完全平方,从而18+3a=16,解得a=[*] 当a=[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故A的对应于特征值4的线性无关特征向量只有一个,从而A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/9eV4777K
0
考研数学二
相关试题推荐
已知f(χ)可导,且满足f(t)=f(y)dy+1,求f(χ).
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,9,1)T.求A的其他特征值与特征向量;
设f(x)有二阶连续导数,且f(0)=0,f’(0)=一1,已知曲线积分∫L[xe2x-6f(x)]sinydx一[5f(x)-f’(x)]cosydy与积分路径无关,求f(x).
已知A为三阶方阵,A2一A一2E=O,且0<|A|<5,则|A+2E|=_________。
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。证明xn存在,并求该极限。
设x→a时,f(x)与g(x)分别是x—a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x—a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
求极限。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
随机试题
在使用辅助检查时应遵循下述要求,但不包括()
Amotherwhoissufferingfromcancercanpassonthediseasetoherunbornchildinextremelyrarecases,【C1】______anewcaser
A.肺鳞状细胞癌B.肺小细胞癌C.肺腺癌D.肺巨噬细胞癌由嗜银细胞发生的癌是
最适宜于治疗癫痫复杂部分性发作的药物是
对于个人及家庭的财务报表,虽然不需遵守严格的会计准则,但仍旧无法完全按照自己的需要来编制。
历史学家们认为:“17世纪后期科学革命的胜利为启蒙运动提供了先决条件。”据此判断,启蒙运动在科学思想方面最重要的先驱者是()
关于天体及其运行,下列表述错误的是()。
IntheUnitedStates,thefirstdaynursery,wasopenedin1854.Nurserieswereestablishedinvariousareasduringthe【C1】_____
二进制数101001转换成十进制整数是()。
DoesShelleythinkthereshouldbestricterregulationsplacedonthepress?
最新回复
(
0
)