首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"((x)在(a,+∞)内存在且大于零,则F(x
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"((x)在(a,+∞)内存在且大于零,则F(x
admin
2020-03-01
31
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(一x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f"((x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf"(x)+3x[f’(x)]
2
=1一e
-x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy-x
2
=一1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=一(n+1)处取得极小值.
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则一f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a.由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=f’(ξ)(x—a),则
由f"(x)>0知,f’(x)在(a,+∞)内单调增加.因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,一∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,显然,不论x
0
>0,还是x
0
<0,都有f"(x
0
)>0,于是由f’(x
0
)=0与f"(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’一2yy’+xy’+y-x=0, ①
再求导,得
(3y
2
一2y+x)y"+(6y一2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
一x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y"|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得
f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
n-1
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x-(n+1)
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=一(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=一e
-(n+1)
,该结论正确.故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/9uA4777K
0
考研数学二
相关试题推荐
设函数f(t)=,且f(t)连续,试求f(t)=_______.
曲线直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为__________。
积分
交换积分次序=_____
设D={(x,y)|1≤x2+y2≤e2},则二次积分=_____
[2004]设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F′(2)等于().
[2007年]如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
(1996年)设f(χ)为连续函数.(1)求初值问题的解y(χ),其中a是正常数;(2)若|f(χ)|≤k(k为常数),证明:当χ≥0时,有|y(χ)|≤(1-e-aχ)
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.求f(x);
随机试题
根据国有资产管理法律制度规定,在产权交易过程中,采取分期付款方式的,受让方首期付款不得低于总价款的()。
国境卫生检疫机关发现检疫传染病或者疑似检疫传染病时,必须用最快的方法报告国务院卫生行政部门,最迟不得超过24小时。( )
下列指标和时间构成的数列中,属于绝对数时期序列的是( )。
教育目的就是培养目标。()
人的全面发展
师徒二人加工同样多的零件。当师傅完成了时,徒弟完成了140个。当师傅完成了任务时,徒弟完成了,那么,师傅加工了()个零件。
下面关于事先违宪审查的表述正确的是()。
使用“调试器”调试程序时,用于显示正在调试的程序文件的窗口是
计算机操作系统的主要功能是()。
Oneofthemostcriticalproblems【C1】_____blackandotherminorityAmericanstodayisthedifficultyofentering【C2】_____socie
最新回复
(
0
)