首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设每次射击命中概率为0.3,连续进行4次射击,如果4次均未击中,则目标不会被摧毁;如果击中1次、2次,则目标被摧毁的概率分别为0.4与0.6;如果击中2次以上,则目标一定被摧毁.那么目标被摧毁的概率p=________.
设每次射击命中概率为0.3,连续进行4次射击,如果4次均未击中,则目标不会被摧毁;如果击中1次、2次,则目标被摧毁的概率分别为0.4与0.6;如果击中2次以上,则目标一定被摧毁.那么目标被摧毁的概率p=________.
admin
2017-12-11
36
问题
设每次射击命中概率为0.3,连续进行4次射击,如果4次均未击中,则目标不会被摧毁;如果击中1次、2次,则目标被摧毁的概率分别为0.4与0.6;如果击中2次以上,则目标一定被摧毁.那么目标被摧毁的概率p=________.
选项
答案
0.4071
解析
设事件A
k
=“射击4次命中k次”,k=0,1,2,3,4,B=“目标被摧毁”,则根据4重伯努利试验概型公式,可知P(A
i
)=C
4
i
0.3
i
,0.7
4一i
,i=0,1,2,3,4,则
P(A
0
)=0.74=0.2401,P(A
1
)=0.4116,P(A
2
)=0.2646,
P(A
3
)=0.0756,P(A
4
)=0.0081.
由于A
0
,A
1
,A
2
,A
3
,A
4
是一完备事件组,且根据题意得
P(B|A
0
)=0,P(B|A
1
)=0.4,P(B|A
2
)=0.6,P(B|A
3
)=P(B|A
4
)=1.
应用全概率公式,有
转载请注明原文地址:https://kaotiyun.com/show/9wr4777K
0
考研数学一
相关试题推荐
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=求方程组(Ⅱ)BX=0的基础解系;
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处韵切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[一a,a],使得
已知r(A)=r1,且方程组Ax=α有解r(B)=r2,=R(B)=R2无解,设A=[α1,α2,…,αN],B=[β1β2……βn],且r(α1,α2……αn,β1β2……βn,β)=r,则()
设f(x)是连续函数,利用定义证明函数F(x)=可导,且F’(x)=f(x);
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且
设A=(aij)An×n,Aij是A中元素aij的代数余子式.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
随机试题
抽油机井动态控制图的d线是最低自喷流压界限线;e线是合理泵效界限线;f线是供液能力界限线;g线是泵、杆断脱漏失线。()
《服务贸易总协定》界定了服务贸易的四种方式,分别是()
下列各项,不属于急性重型肝炎典型表现的是
既能行气除满,又可平喘的药物是
肾上腺素可引起的不适中,不包括()
两危险点的应力状态如图所示,且σ=τ,由第四强度理论比较其危险程度,正确的是( )。
下列关于资源税的说法,正确的是()。
Everyday25millionU.S.childrenrideschoolbuses.Thesafetyrecordforthesebusesismuchbetterthanforpassengercars;
公安机关在刑事诉讼中的地位是侦查机关和刑罚执行机关。( )
将计算机分为286,386,486,Pentium,是按照
最新回复
(
0
)