首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
admin
2015-07-22
45
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
一α
2
)=一(α
1
一α
2
),A(α
2
-α
3
)=一(α
2
-α
3
),得A的另一个特征值为λ
2
=一1.因为α
1
,α
2
,α
3
线性无关,所以α
1
一α
2
与α
2
一α
3
也线性无关,所以λ
2
=一1为矩阵A的二重特征值,即A的特征值为2,一1,一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Obw4777K
0
考研数学一
相关试题推荐
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求P(X=1|Z=0);
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
设n阶矩阵A与对角矩阵合同,则A是().
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
设X1,X2,…,Xn为来自总体N(μ,σ2)的简体随机样本,又为样本均值,记:
随机试题
ITu-R(InternationalTelecommunicationUnion-Radio)负责()标准的制定。
消费者初次选购价格昂贵、购买次数较小、冒风险的商品,此类购买行为类型是()
本周蛋白尿、血红蛋白尿和肌红蛋白尿称为
《预算法》的主要内容包括预算管理职权、预算收支范围、预算编制、预算审查和批准、预算执行、预算调整、决算、监督和法律责任等。()
A公司是一个生产和销售通信器材的股份公司。假设该公司适用的所得税税率为25%。对于明年的预算出现三种意见:方案一:维持目前的生产和财务政策。预计销售4.5万件,售价为240元/件,单位变动成本为200元,固定成本为120万元。公司的资本结构为负债400万
平行结转分步法的成本核算对象是各种产品及其经过的各个生产步骤中的成本份额。()
阅读下面材料,回答问题。……正是严冬天气,彤云密布,朔风渐起,却早纷纷扬扬卷下一天大雪来……只说林冲就床上放了包裹被卧,就坐下生些焰火起来。屋后有一堆柴炭,拿几块来,生在地炉里。仰面看那草屋时,四下里崩坏了,又被朔风吹撼,摇振得动。林冲道:“这屋如何过得
下列事项应当设立行政许可的是( )
下列对继承的说法,()是正确的。
A.littleB.unansweredC.detectD.inevitablyE.deepF.dropG.uselessH.
最新回复
(
0
)