首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
admin
2015-07-22
40
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
一α
2
)=一(α
1
一α
2
),A(α
2
-α
3
)=一(α
2
-α
3
),得A的另一个特征值为λ
2
=一1.因为α
1
,α
2
,α
3
线性无关,所以α
1
一α
2
与α
2
一α
3
也线性无关,所以λ
2
=一1为矩阵A的二重特征值,即A的特征值为2,一1,一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Obw4777K
0
考研数学一
相关试题推荐
设f(x)连续,且,则().
求极限
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是它的解.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
用观察的方法判断下列数列是否收敛:
设A,B都是可逆矩阵,证明可逆,并求它的逆矩阵。
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵∧,使得
设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)Yi的方差DYi,i=1,2,…,n;(Ⅱ)Y1与Yn的协方差cov(Y1,Yn).
随机试题
组织内公共关系机构的工作有哪些?
患者,男,63岁。COPD病史10年。2天来症状加重,并出现意识障碍。胸片表现符合肺心病表现的是
不能杀灭芽孢的灭菌方法有
原始细胞>30%,过氧化物酶染色阴性或阳性率<3%,无Anet小体,免疫细胞化学MPO阳性,CD13、CD14、CD15、CD33、CD11b中至少有一种阳性。不表达B系和T系特异性抗原,可表达CD34、TdT、HLA—DR。符合上述特征的急性髓细胞性
培养真菌常用的培养基是
厂(矿)级岗前安全培训内容应当包括()等内容。
某综合性医院选址在城市中心地带,设有床位300张,设有放射科(X光机、CT机)、传染病区等23个诊疗科室,员工400人。辅助生活设施有卫生、办公室、洗衣房等。公用工程中有1台DZL2-1.25-III型燃煤锅炉。配XZD-2型单筒旋风除尘器,烟囱高25m,
建立防黑客扫描和检测系统,也可以在一定程序上起到防范黑客的作用。()
关于国内信用证特征的表述中,不符合法律规定的是()。
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
最新回复
(
0
)