首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T. (I)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T. (I)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化
admin
2017-12-21
61
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX经过正交变换化为标准形f=2y
1
2
-y
2
2
-y
3
2
,又A
*
α=α,其中α=(1,1,-1)
T
.
(I)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x
1
,x
2
,x
3
)=X
T
AX化为标准形.
选项
答案
(I)显然A的特征值为λ
1
=2,λ
2
=-1,λ
3
=-1,|A|=2,伴随矩阵A
*
的特征值为μ
1
=1,μ
2
=-2,μ
3
=-2.由A
*
α=α得AA
*
α=Aα,即Aα=2α,即α=(1,1,-1)
T
是矩阵A的对应于特征值λ
1
=2的特征向量. 令ξ=(x
1
,x
2
,x
3
)
T
为矩阵A的对应于特征值λ
2
=-1,λ
3
=-1的特征向量,因为A为实对称矩阵,所以α
T
ξ=0,即x
1
+x
2
-x
3
=0,于是λ
2
=-1,λ
3
=-1对应的线性无关的特征向 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/A1X4777K
0
考研数学三
相关试题推荐
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
计算
设f(x)=,则()
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
微分方程的通解是________.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
求差分方程yt+1一ayt=2t+1的通解.
求下列极限.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
求微分方程y″+4y=sin2x满足条件y(0)=0,y′(0)=1的特解.
随机试题
法的本质不包括
患者,男,52岁。反复无痛性肉眼血尿伴条状血块2个月,膀胱镜检见右输尿管口喷血,尿细胞学可见癌细胞,静脉肾盂造影最有价值的X线表现是
有关头颅水平面的定位,正确的是
深化涉外经济体制改革,完善促进()跨进流动和优化配置的体制和政策。
互联网技术在城市规划中起到的典型作用有()。
我国牙雕主要产于()。
TheFirstBicycleThehistoryofthebicyclegoesbackmorethan200years.In1791,CountdeSivrac【C1】______on-lookersin
Completesilenceisfoundonlyinlaboratoriescalledanechoicrooms.Thewallsandceilings,madeofblocksofspecialsound-su
下面关于光纤的叙述中,不正确的是( )。
A、Hewillcallonthegeneralmanager.B、Hisclassmateswilldohimafavor.C、Thewoman’sfriendwillhelphim.D、Hewillfind
最新回复
(
0
)