首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明: (1)aij=Aij←→ATA=E且|A|=1; (2)aij=一Aij←→ATA=E且|A|=一1.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明: (1)aij=Aij←→ATA=E且|A|=1; (2)aij=一Aij←→ATA=E且|A|=一1.
admin
2019-07-22
69
问题
A为n(n≥3)阶非零实矩阵,A
ij
为A中元素a
ij
的代数余子式,试证明:
(1)a
ij
=A
ij
←→A
T
A=E且|A|=1;
(2)a
ij
=一A
ij
←→A
T
A=E且|A|=一1.
选项
答案
(1)当a
ij
=A
ij
时,有A
T
=A
*
,则A
T
A=AA
*
=|A|E。由于A为行阶非零实矩阵,即不全为0,所以tr(AA
T
)=[*]a
ij
>0.而tr(AA
T
)=tr(|A|E)=n|A|,这说明|A|>0。在AA
T
=|A|E两边取行列式,得|A|
n一2
=1,|A|=1. 反之,若A
T
A=E且|A|=1,则A
*
A=|A|E=E且A可逆,于是A
T
A=A
*
A,A
T
=A
*
,即a
ij
=A
ij
. (2)当a
ij
=一A
ij
时,有A
T
=一A
*
,则A
T
A=一A
*
A=一|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以|A|=[*]a
ij
<0.在A
T
A=一|A|E两边取行列式得|A|=一1. 反之,若A
T
A=E且|A|=一11,由于A
*
A=|A|E=一E,于是A
T
A=一A
*
A.进一步,由于A可逆,得A
T
=一A
*
,即a
ij
=一A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/AFN4777K
0
考研数学二
相关试题推荐
设z=z(χ,y)由χyz=χ+y+z确定,求
设z=f[χg(y),χ-y],其中f二阶连续可偏导,g二阶可导,求
设z=yf(χ2-y2),其中f可导,证明:
求曲线y=与χ轴所围成的平面区域绕y轴旋转而成的几何体的体积.
设L:(0≤t≤2π).(1)求曲线L与χ轴所围成平面区域D的面积.(2)求区域D绕χ轴旋转一周所成几何体的体积.
下列关系中,是复合函数关系的是[]
设向量组α1,α2,…,αs为齐次线性方程组AX一0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
要使都是线性方程组Ax=0的解,只要系数矩阵A为()
计算二重积分(x0+4x+y0)dxdy,其中D是曲线(x0+y0)0=a0(x0-y0)围成的区域.
随机试题
PASSAGEONE(1)Hehadscarcelywashedhimself,andmadeeverythingtidy,byemptyingthebasinoutofthewindow,agreeablyto
下列哪几种说法是对的
对危及生命的反复发作室性心动过速的患者,最佳治疗为
A、阴道外出血量和贫血程度不一致,伴腹痛B、阴道流血性黏液C、无痛性反复阴道出血D、分娩阻滞形成病理缩复环,伴少量阴道出血E、分娩阻滞,剧烈腹痛后宫缩停止,病情恶化以上属于子宫破裂的是
对工程造价信息分类必须遵循的基本原则有()。
APowerfulInfluenceTherecanbenodoubtatallthattheInternethasmadeahugedifferencetoourlives.Parentsareworr
Youarequitewrong.She______likeyou.
三个中国学生张林、赵强、李珊和三位外国留学生约翰、杰西、安娜暑假外出旅游。可供选择的旅游地有西安、杭州、大连和张家界。已经知道:(1)每人只能去一个地方;(2)凡是有中国学生去的地方,就必须有外国留学生去;(3)凡是有外国留学
设a=2,b=3,c=4,d=5,表达式Nota<=cOr4*c=b^2Andb<>a+c的值是()。
以下数组定义中错误的是
最新回复
(
0
)