首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(Ⅰ)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(Ⅰ)的解。 以上命题中正确的是( )
admin
2018-05-17
93
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题:
①(Ⅰ)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不是(Ⅱ)的解;
④(Ⅱ)的解不是(Ⅰ)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面有:
若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
2
α=0,即(2)的解必是(1)的解。因此命题②正确。
所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/SMk4777K
0
考研数学二
相关试题推荐
设等于().
设函数f(x)连续,则=().
设矩阵A,B满足A*BA=2BA-8E,其中A=,层为单位矩阵,A*为A的伴随矩阵,则B:__________.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’’(x)≤0,且(1)=f’(1)=1,则().
设函数f(x)在[a,b]上有定义,在开区间(a,b)内可导,则().
微分方程y"-4y=e2x的通解为________.
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为导出y=y(x)满足的微分方程和初始条件;
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
已知函数f(x)在的一个原函数,且f(0)=0.(Ⅰ)求f(x)在区间上的平均值;(Ⅱ)证明f(x)在区间内存在唯一零点.
随机试题
生命神圣论的积极意义不包括的是()
患者,女,22岁。劳力性心悸气促1年,昨晚2时突起呼吸困难,不能平卧,咳吐大量粉红色泡沫痰。查体:唇发绀,心尖区触及舒张期震颤,心尖区闻舒张期隆隆样杂音,第一心音增强,肺部布满大量哮鸣音及湿性啰音。该患者咳出大量粉红色泡沫痰的原因是
尿渗透压降低常见于下列哪种疾病
用于传递空间互相垂直而不相交的两轴间的运动和动力的传动系统是()。
11周岁的张某未事先征得法定代理人的同意,将其价值3000元的学习机赠送给同学李某。该赠与的效力为()。
4G是集3G与WLAN于一体并能够传输高质量视频图像以及图像传输质量与高清晰度电视不相上下的技术产品。下列关于4G的说法错误的是()。
根据教育概念的分类方法,“课程”属于()。
利用贪心法求解0/1背包问题时,(26)能够确保获得最优解。用动态规划方求解O/1背包问题时,将“用前i个物品来装容量是x的背包”的0/1背包问题记为KNAP(1,i,X)设fi(X)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得
Readthetextsfromamagazinearticleinwhichfivepersonstalkedabouttheirattitudetohelpingthepeopleindevelopingcou
UniversitiesBranchOutA)Asneverbeforeintheirlonghistory,universitieshavebecomeinstrumentsofnationalcompetitionas
最新回复
(
0
)