首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
admin
2016-10-26
84
问题
已知A,B均是3阶非零矩阵,且A
2
=A,B
2
=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
选项
答案
由于A
2
=A,则A的特征值只能是0或1,又因(A—E)A=0,A≠0,知齐次方程组(A—E)x=0有非零解,故|A—E|=0,即λ=1必是A的特征值.据AB=0,B≠0,得Ax=0有非零解,那么|0E—A|=|A|=0,故0必是A的特征值. 由于已知条件的对称性,0与1必是B的特征值.对于Aα=α,同时左乘矩阵B,得 Bα=B(Aα)=(BA)α=0α=0=0α, 所以α是矩阵B关于λ=0的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/AFu4777K
0
考研数学一
相关试题推荐
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设A是m×n矩阵,B是,n×m矩阵,则
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
随机试题
A.铜绿假单胞菌B.变形杆菌C.拟杆菌D.大肠埃希菌E.链球菌常存在于口腔、胃肠道和外生殖道,脓液有恶臭味,普通细菌培养为阴性,涂片可找到革兰阴性杆菌的是
真核细胞生物氧化的主要场所是
口腔颌面外科手术中表浅出血点使用钳夹止血后,进一步处理最常用的方法是
生地黄的功用
根据下列材料回答问题。2015年我国钟表全行业实现工业总产值约675亿元,同比增长3.2%,增速比上年同期提高1.7个百分点。全行业全年生产手表10.7亿只,同比增长3.9%,完成产值约417亿元,同比增长4.3%,增速提高1.9个百分点
有利的供给冲击最终将造成()。(2018年对外经济贸易大学815经济学综合)
说明批判学派与经验学派的区别。(北邮2010研)
下列关于我国行政区域划分的表述中,正确的是()
A、Itissaidtobe"out-of-the-money".B、Itissaidtobe"at-the-money".C、Itissaidtobe"unprofitable".D、Itissaidtob
TheSantaAnaappealscourtupheldanearlierjuryverdictawarding$3.2millionindamagestoAlexisSartiwhosufferedserio
最新回复
(
0
)