首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-21
59
问题
讨论曲线y=2lnχ与y=2χ+ln
2
χ+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(χ)=2χ+ln
2
χ+k-2lnχ(χ∈(0,+∞)),于是本题两曲线交点个数即为函数f(χ)的零点个数.由 f′(χ)=2+[*](χ+lnχ-1), 令g(χ)=χ+lnχ-1 g′(χ)=[*] 令f′(χ)=0可解得唯一驻点χ
0
=1∈(0,+∞). 当0<χ<1时f′(χ)<0,f(χ)在(0,1]单调减少;而当χ>1时f′(χ)>0,f(χ)在[1,+∞)单调增加.于是f(1)=2+k为f(χ)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(χ)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(χ)在(0,+∞)内恒值函数,无零点. 当f(1)=0即k=-2时f(χ)在(0,+∞)内只有一个零点χ
0
=1. 当f(1)<0即k<-2时需进一步考察f(χ)在χ→0
+
与χ→∞的极限: [*])[2(χ+k)+lnχ(lnχ-2)]=+∞, [*][(2(χ+k)+lnχ(lnχ-2)]=+∞, 由连续函数的零点定理可得,[*]χ
1
∈(0,1)与χ
2
∈(1,+∞)使得f(χ
1
)=f(χ
2
)=0,且由f(χ)在(0,1)与(1,+∞)内单调可知f(χ)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(χ)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/AJt4777K
0
考研数学二
相关试题推荐
1/3
ef’(x)/f(x)
-1/2
当x→1时,f(x)=(x2-1)/(x-1)e1/(x-1)的极限为().
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明第一小问中x0是唯一的。
某厂家生产的一种产品同时在两个市场进行销售,售价分别为p1和p2;销售量分别为q1和q2,需求函数分别为q1=24-0.2p1q2=10-0.05p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售价,能使其获得总利润最大?最
设.求的值。
用定义验证级数是否收敛。
函数的无穷间断点的个数为
随机试题
A.发作性眩晕、耳鸣、听力减弱B.伴鼓膜穿孔C.渐进性眩晕、耳鸣、听力减退、口周麻木D.头部处在一定位置时眩晕E.上感后眩晕、恶心、呕吐、无耳鸣及听力减退上述临床表现符合哪种疾病内耳药物中毒
A、CMB、LDLC、VLDLD、HDLE、IDL体内主要运输外源性甘油三酯的是
葡萄球菌肺炎抗生素治疗的疗程是
单室模型多剂量静脉注射给药稳态最大血药浓度公式是()。
商业汇票的承兑期限最长不超过()。
该公司2003年的资产净利率为()。该公司2003年的应收账款周转率为()次。
依据新的《企业所得税法》,下列适用20%比例税率的是( )。
以下是一个教学片断,找出其中所运用的教学原则。教师:讲课之前,同学们请先告诉我,我手里现在拿的是什么?学生:土豆/马铃薯。教师:对,同学们都很熟悉,也很常见,而且也有不少人喜欢吃吧。那么,马铃薯的发源地是在中国吗?学
阅读下列材料并回答问题材料12004年4月26日,中国国务院新闻办发表《中国的就业状况和政策》白皮书。白皮书指出,中国有近13亿人口,是世界上人口最多的国家,解决就业问题任务繁重、艰巨、紧迫。白皮书指出,近年来,在就业压力持续加大的情况下,
ICMPisshortforInternet(71)MessageProtocol,andisanintegralpartoftheInternet(72)suite(commonlyreferredtoas
最新回复
(
0
)