首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-21
55
问题
讨论曲线y=2lnχ与y=2χ+ln
2
χ+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(χ)=2χ+ln
2
χ+k-2lnχ(χ∈(0,+∞)),于是本题两曲线交点个数即为函数f(χ)的零点个数.由 f′(χ)=2+[*](χ+lnχ-1), 令g(χ)=χ+lnχ-1 g′(χ)=[*] 令f′(χ)=0可解得唯一驻点χ
0
=1∈(0,+∞). 当0<χ<1时f′(χ)<0,f(χ)在(0,1]单调减少;而当χ>1时f′(χ)>0,f(χ)在[1,+∞)单调增加.于是f(1)=2+k为f(χ)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(χ)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(χ)在(0,+∞)内恒值函数,无零点. 当f(1)=0即k=-2时f(χ)在(0,+∞)内只有一个零点χ
0
=1. 当f(1)<0即k<-2时需进一步考察f(χ)在χ→0
+
与χ→∞的极限: [*])[2(χ+k)+lnχ(lnχ-2)]=+∞, [*][(2(χ+k)+lnχ(lnχ-2)]=+∞, 由连续函数的零点定理可得,[*]χ
1
∈(0,1)与χ
2
∈(1,+∞)使得f(χ
1
)=f(χ
2
)=0,且由f(χ)在(0,1)与(1,+∞)内单调可知f(χ)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(χ)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/AJt4777K
0
考研数学二
相关试题推荐
设f(x)=(1-e1/(x-1))/(1+e1/(x-1))arctan1/x,求f(x)的间断点,并判断其类型.
设,其中a,b为常数,则().
求曲线y=ex,y=sinx,x=0和x=1所围成的图形绕x轴旋转所成立体的体积。
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m(m为常数),则曲线y=g(x),y=f(x),x=a及x=b所围平面图形绕直线y=m旋转而成的旋转体体积为
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:由上述所围平面图形绕x轴旋转一周所成旋转体的体积。
设常数λ>0,且级数________。
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<b时,有().
已知函数f(x,y)在点(0,0)某邻域内连续,且,则
随机试题
车床的长丝杠是用来车削()的。
一般油气藏中均存在游离气,如果油气藏中没有游离气体,则圈闭中最凸起的地带为()。
悬浮聚合体系一般由单体、水、分散剂、引发剂组成。()
下述描述不符合遗传性肿瘤的特点的是
A.右肺水平裂外侧部上移B.侧位呈底向前胸壁、尖指向肺门的三角形阴影C.正位片底向膈面、尖指向肺门的三角形影D.纵隔向健侧移位E.斜裂向前上方移位右肺下叶不张的X线表现为
目前最常用的制作种植体的材料为
治疗慢性粒细胞性白血病之阴虚内热证,应首选
下列属于行政合同的是()。
【2015.辽宁鞍山】在知觉过程中,人们力求根据已有知识经验对知觉对象作出某种解释,使其具有一定意义,即知道它“是什么”,并能用语词把它表示出来,这叫作()。
随着地形抬升、湿度加大而形成的雾气,在太行山的峡谷和丘陵之间形成了_______的场景,原本峻峭的山岭像是披上了一层_______的细纱,把太行山的挺拔峥嵘包裹了起来。填入画横线部分最恰当的一项是:
最新回复
(
0
)