首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-21
44
问题
讨论曲线y=2lnχ与y=2χ+ln
2
χ+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(χ)=2χ+ln
2
χ+k-2lnχ(χ∈(0,+∞)),于是本题两曲线交点个数即为函数f(χ)的零点个数.由 f′(χ)=2+[*](χ+lnχ-1), 令g(χ)=χ+lnχ-1 g′(χ)=[*] 令f′(χ)=0可解得唯一驻点χ
0
=1∈(0,+∞). 当0<χ<1时f′(χ)<0,f(χ)在(0,1]单调减少;而当χ>1时f′(χ)>0,f(χ)在[1,+∞)单调增加.于是f(1)=2+k为f(χ)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(χ)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(χ)在(0,+∞)内恒值函数,无零点. 当f(1)=0即k=-2时f(χ)在(0,+∞)内只有一个零点χ
0
=1. 当f(1)<0即k<-2时需进一步考察f(χ)在χ→0
+
与χ→∞的极限: [*])[2(χ+k)+lnχ(lnχ-2)]=+∞, [*][(2(χ+k)+lnχ(lnχ-2)]=+∞, 由连续函数的零点定理可得,[*]χ
1
∈(0,1)与χ
2
∈(1,+∞)使得f(χ
1
)=f(χ
2
)=0,且由f(χ)在(0,1)与(1,+∞)内单调可知f(χ)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(χ)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/AJt4777K
0
考研数学二
相关试题推荐
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx(1-cost)dt,则当x→0时,f(x)是g(x)的().
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
有两个级数,根据已知条件进行作答。若两个级数:两个都发散,其和如何?
用定义判断级数是否收敛。
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在,若用“PQ”表示可由性
求函数z=3axy-x3-y3(a>0)的极值。
设偶函数f(x)的二阶导数f’’(x)在x=0的某邻域内连续,且f(0)=1,f"(0)=2,试证级数绝对收敛。
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
函数的无穷间断点的个数为
随机试题
论述工作分析的具体方法及其优缺点。
在费用的计算中应包括
流行性脑脊髓膜炎患者最典型的皮肤黏膜体征是
对工程网络计划进行优化,其目的使该工程()。
有限责任公司的股东之间相互转让其全部或者部分股权,应当经其他股东过半数同意。()(2012年)
C公司正在研究一项生产能力扩张计划的可行性,需要对资本成本进行估计。估计资本成本的有关资料如下:(1)公司现有长期负债:面值为1000元,票面年利率为12%,每半年付息一次的不可赎回债券;该债券还有5年到期,当前市价为1051.19元;假设发行长期债券时
新建房屋安装中央空调设备,无论会计上如何核算,均应计入房产原值;但旧房安装空调设备,一般都单独作固定资产入账,不计入房产原值。()
下列属于船舶吨税的延期优惠的是()。
DOM is a platform-and language-(21)API that allows programs and scripts to dynamically access and update the content, structure
使用VC6打开考生文件夹下的源程序文件modi1.cpp,但该程序运行时有错,请改正程序中的错误,使程序输出的结果为:m=-10n=-10p=0q=-10z=A注意:错误的语句在//******error******的下面,修改该语句即可。#
最新回复
(
0
)