首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnχ与y=2χ+ln2χ+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-21
63
问题
讨论曲线y=2lnχ与y=2χ+ln
2
χ+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(χ)=2χ+ln
2
χ+k-2lnχ(χ∈(0,+∞)),于是本题两曲线交点个数即为函数f(χ)的零点个数.由 f′(χ)=2+[*](χ+lnχ-1), 令g(χ)=χ+lnχ-1 g′(χ)=[*] 令f′(χ)=0可解得唯一驻点χ
0
=1∈(0,+∞). 当0<χ<1时f′(χ)<0,f(χ)在(0,1]单调减少;而当χ>1时f′(χ)>0,f(χ)在[1,+∞)单调增加.于是f(1)=2+k为f(χ)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(χ)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(χ)在(0,+∞)内恒值函数,无零点. 当f(1)=0即k=-2时f(χ)在(0,+∞)内只有一个零点χ
0
=1. 当f(1)<0即k<-2时需进一步考察f(χ)在χ→0
+
与χ→∞的极限: [*])[2(χ+k)+lnχ(lnχ-2)]=+∞, [*][(2(χ+k)+lnχ(lnχ-2)]=+∞, 由连续函数的零点定理可得,[*]χ
1
∈(0,1)与χ
2
∈(1,+∞)使得f(χ
1
)=f(χ
2
)=0,且由f(χ)在(0,1)与(1,+∞)内单调可知f(χ)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(χ)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/AJt4777K
0
考研数学二
相关试题推荐
[*]
极限是否存在?
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S1+S2达到最小,并求出最小值。
设函数f(x)在[a,b]上具有连续的二阶导数,证明:在(a,b)内存在一点ξ,使得∫abf(x)dx=(b-a)(b-a)3f"(ξ)①
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u).
设有三元方程xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程________。
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
设k>0,则函数f(x)=lnx-x/e+k的零点个数为().
求下列极限:
求下列极限:
随机试题
A.桂枝茯苓丸B.血府逐瘀汤C.失笑散D.膈下逐瘀汤E.桃红四物汤治疗子宫内膜异位症气滞血瘀证,应首选
7个月女孩,发热、咳嗽、喘憋6天。入院后第2天患儿突然面色灰白,极度烦躁不安,呼吸明显增快,60次/分,听心音低钝,节律整。心率180次/分,呈奔马律,双肺闻及广泛的水泡音,肝肋下3cm,下肢有浮肿,血常规:白细胞55×109/L,胸部X线片双肺见小片状影
胫腓骨中1/3骨折患者,复位后,用长腿石膏管型固定,4个月骨折愈合拆除石膏后,发现膝关节功能发生障碍,其原因是
对刑法关于撤销假释的规定,下列哪些理解是正确的?
董事长在诉讼事务和非诉讼事务上对外代表公司。()
下列交易或事项所形成的经济利益的流出,一般会直接形成费用的是()。
WhydoweneedtheEnglishmajor?The【C1】______isineverymouth—or,atleast,isdiscussedextensivelyincolumnsand【C2】______
在下列函数原型中,可以作为类AA构造函数的是()。
Iclosemyeyesandcanstillhearher—thelittlegirlwitha【C1】______sostrongandpowerfulwecouldhearherhalfwaydownthe
A、Whatresponsibilitieshewouldhave.B、Whenheissupposedtostartwork.C、Whenhewillbeinformedabouthisapplication.D、
最新回复
(
0
)