首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证: |∫01f(x)dx|≤|f’(x)|
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证: |∫01f(x)dx|≤|f’(x)|
admin
2022-10-08
68
问题
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证:
|∫
0
1
f(x)dx|≤
|f’(x)|
选项
答案
由题设可知,f(x)在[0,1]上满足拉格朗日中值定理,于是有 f(x)=f(x)-f(0)=xf’(ξ
1
),ξ
1
∈(0,x) f(x)=f(x)-f(1)=(x-1)f’(ξ
2
),ξ
2
∈(x,1) 又∫
0
1
f(x)dx=∫
0
x
f(t)dt+∫
x
1
f(t)dt=∫
0
x
f’(ξ
1
)tdt+∫
x
1
f’(ξ
2
)(t-1)dt 所以对任意的x∈[0,1]有 |∫
0
1
f(x)dx|≤|∫
0
x
f’(ξ
1
)tdt|+|∫
x
1
f’(ξ
2
)(t-1)dt| ≤∫
0
x
|f’(ξ
1
)|t|dt+∫
x
1
|f’(ξ
2
)|t-1|dt =∫
0
x
|f’(ξ
1
)|tdt+∫
x
1
|f’(ξ
2
)|(1-t)dt ≤[*]|f’(x)|[∫
0
x
tdt+∫
x
1
(1-t)dt] =[*]|f’(x)|·[*][x
2
+(1-x)
2
] 令x=[*],即得|∫
0
1
f(x)dx|≤[*]|f’(x)|.
解析
转载请注明原文地址:https://kaotiyun.com/show/3YR4777K
0
考研数学三
相关试题推荐
一汽车沿街道行驶,需要经过三个均设有红绿信号灯的路口,每个信号灯均为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数.求X的概率分布;
设函数f(x)在x0处可导,且f(x0)≠0,求
设函数设数列{xn}满足证明存在,并求此极限.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f′(x)>0,如果存在,证明:存在ξ∈(a,b),使得
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
求幂级数的和函数.
设y=f(x)是由方程sin(xy)+ln(y-x)=x所确定的隐函数,求
设函数f(x)处处可导,且又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
求内接于椭球面的长方体的最大体积.
随机试题
《哈姆莱特》中的主要人物有
对于主动脉瓣狭窄,超声表现不正确的是
血清蛋白按分子大小进行凝胶过滤,下列结果正确的是
双联式低层住宅的特点不包括()。
设计将带表头的链表逆置的算法。
抽象表现主义运动中最有影响的艺术家是()。
阅读材料,根据要求作答:【材料一】北师大版《生物学.七年级.下册》第十章人体的能量供应第二节人体细胞获得氧气的过程(第2课时)图10—8肺内及组织中气体交换示意图。【材料二】《义务教育生物学课程标准(2011年版)》内容要求:概述人体肺部和组织细胞处
犯罪嫌疑人、被告人逃匿、死亡案件没收违法所得的申请,由犯罪地或者犯罪嫌疑人,被告人()人民法院组成合议庭进行审理。
每当面对繁忙的交通状况时,我们总觉得它是无序的。但是仔细观察,我们就会发现,在“混乱”的表象下却存在着群体协作行为:每一个驾驶员都努力规避交通事故,这是个体行为;在路上行驶时,汽车首尾相接,车距狭小但不碰撞,车距大时就加速,车距小时就减速,这却是群体协作。
Therearetwobasicwaystoseegrowth:oneasaproduct,theotherasaprocess.Peoplehavegenerallyviewedpersonalgrowtha
最新回复
(
0
)