首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证: |∫01f(x)dx|≤|f’(x)|
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证: |∫01f(x)dx|≤|f’(x)|
admin
2022-10-08
57
问题
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证:
|∫
0
1
f(x)dx|≤
|f’(x)|
选项
答案
由题设可知,f(x)在[0,1]上满足拉格朗日中值定理,于是有 f(x)=f(x)-f(0)=xf’(ξ
1
),ξ
1
∈(0,x) f(x)=f(x)-f(1)=(x-1)f’(ξ
2
),ξ
2
∈(x,1) 又∫
0
1
f(x)dx=∫
0
x
f(t)dt+∫
x
1
f(t)dt=∫
0
x
f’(ξ
1
)tdt+∫
x
1
f’(ξ
2
)(t-1)dt 所以对任意的x∈[0,1]有 |∫
0
1
f(x)dx|≤|∫
0
x
f’(ξ
1
)tdt|+|∫
x
1
f’(ξ
2
)(t-1)dt| ≤∫
0
x
|f’(ξ
1
)|t|dt+∫
x
1
|f’(ξ
2
)|t-1|dt =∫
0
x
|f’(ξ
1
)|tdt+∫
x
1
|f’(ξ
2
)|(1-t)dt ≤[*]|f’(x)|[∫
0
x
tdt+∫
x
1
(1-t)dt] =[*]|f’(x)|·[*][x
2
+(1-x)
2
] 令x=[*],即得|∫
0
1
f(x)dx|≤[*]|f’(x)|.
解析
转载请注明原文地址:https://kaotiyun.com/show/3YR4777K
0
考研数学三
相关试题推荐
设x→0时,是等价的无穷小量,试求常数a和k的值.
设f(x)在(-∞,+∞)内二阶可导,且f"(x)>0,f(0)=0,证明:在(-∞,0)和(0,+∞)都是单调增加的.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
已知3阶矩阵A满足Aαi=iαi,i=1,2,3,其中α1=(1,0,0)T,α2=(0,1,1)T,α3=(0,0,1)T,试求矩阵A.
设有两条抛物线记它们交点的横坐标的绝对值为an,求这两条抛物线所围成的平面图形的面积Sn;
设f(x)在点x=0某一邻域内具有二阶连续导数,且证明级数绝对收敛.
如果函数在x=0处有连续导数,求A的取值范围.
设f(x)是以T为周期的连续函数.证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k,
(I)设f(x)是连续函数,并满足又F(x)是f(x)的原函数,且F(0)=0,则F(x)=__________;(Ⅱ)若函数f(x)连续并满足则f(x)=__________.
设求f(x)的值域。
随机试题
(2010年10月)里格斯认为,在现代工业社会中,成为各种利益和要求的汇聚点和表达者的是_________。
下列不可以使合同发生无效的是()。
石方开挖使用的爆破方法中大多采用集中药包的是()。
在索洛模型中,技术进步是内生变量。()
下列不属于执行理财规划方案原则的是()。
重庆火锅的原料主要有下列的()。
截至2012年年底,我国全年新增网民5090万人(其中农村新增1960万人),互联网普及率为42.1%,较2011年年底提升3.8个百分点,网民中使用手机上网的用户占比由上年年底的69.3%提升至74.5%。微博用户同比增加5873万人,网民中微博用户的比
现代社会的种种特征对教育系统具有决定作用。()
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
年画(NewYearPicture)是中国特有的一种绘画体裁。贴年画的习俗源于在房子的大门上贴门神(DoorGods)的传统。传统年画以精美的木刻(blockprint)和鲜艳的色彩闻名。主题主要是花鸟、可爱的婴儿、神话传说与历史故事等,表达人们祈望
最新回复
(
0
)