首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f’(0)=0.=-1,则
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f’(0)=0.=-1,则
admin
2016-01-23
43
问题
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f’(0)=0.
=-1,则
选项
A、f(0)是f(x)的极大值
B、f(0)是f(x)的极小值
C、[0,f(0)]是曲线f(x)的拐点
D、f(0)不是f(x)的极值,点[0,f(0)]也不是曲线y=f(x)的拐点
答案
C
解析
本题考查由已知抽象函数f(x)满足的极限等式条件,判定f(x)在某点的极值、拐点问题,可用赋值法快速求得结果,也可用极限的保号性进行分析.
解1 赋值法.因x→0时,1-e
-x
~x,故题设等式条件亦为
=-1.取f’’(x)=-x,则
f’(x)=
x
2
+C
1
,f(x)=
x
3
+C
1
x+C
2
令C
1
=C
2
=0,则f(x)=
x
3
满足题设条件,以此f(x)考查四个选项,只有(C)选项正确.
解2利用极限的保号性分析求解.
由
=-1及f’’(x)连续可知f’’(0)=0;再由极限的保号性知,存在x=0的某邻域U(0,δ),使得
<0.于是在U(0,δ)内,当x<0时,f’’(x)>0;当x>0时,f’’(x)<0,即点(0,f(0))是曲线y=f(x)的拐点.
转载请注明原文地址:https://kaotiyun.com/show/ARw4777K
0
考研数学一
相关试题推荐
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
设A=(aij)n×n,且|A|中每个元素aij与其代数余子式Aij相等,证明:|A|≠0.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点。写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式。
设f(x)为二阶可导的偶函数,f(0)=1,f”(0)=2,且f"(x)在x=0的邻域内连续,则=________.
计算二重积分,其中D是曲线(x2+y2)2=a2(x2-y2)围成的区域。
设u=u(x,y,z)连续可偏导,令若,证明:u仅为r的函数。
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
随机试题
NAT技术有三种类型:静态NAT、____________,以及网络地址端口转换NAPT。
设A,B为同阶方阵,则有().
脊柱椎管最狭窄的部位是
不适宜做磁疗的疾病是
A.乙酰CoAB.丙酮C.丙酮酸D.丙二酰CoAE.丙二酸糖酵解过程的终产物是()
肺心病总属本虚标实,邪实主要包括
现代机械的安全设计必须全面、系统地对导致危险的因素进行定性、定量分析和评价,整体寻求降低风险的最优设计方案,这表明现代机械具有()。
集体教育与个别教育相结合原则是指教育者一方面要对集体进行教育,另一方面要对个别学生进行教育。()
盐城一高中在高考誓师大会上,学校领导带领学生放生101条鲤鱼,种植桂花树。寓意“百里挑一”“蟾宫折桂”,有人说这是搞彩头或迷信。对此,你怎么看?
【B1】【B8】
最新回复
(
0
)