首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
admin
2015-05-07
126
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上
点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=
的圆面,若以每秒v
0
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
(Ⅰ)写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并求出水面高度z与时间t的函数关系;
(Ⅱ)求水表面上升速度最大时的水面高度;
(Ⅲ)求灌满容器所需时间.
选项
答案
(Ⅰ)由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是 [*] 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1-z)
2
]. 现由[*]=v
0
及z(0)=0,求z(t) 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1-z)
2
]dz=[*] (*) 两边积分并注意z(0)=0,得 [*] (**) (Ⅱ)求z取何值时[*]取最大值.已求得(*)式即 [*] (若未解答题(Ⅰ),可对题(Ⅰ)告知要证的结论即(**)式两边对t求导得[*],同样求得上式) 因此,求[*]取最大值时z的取值归结为求f(z)=z
2
+(1-z)
2
在[0,1]上的最小值点.由 [*] [*]f(z)在z=1/2在[0,1]上取最小值.故z=1/2时水表面上升速度最大. (Ⅲ)归结求容器的体积,即 [*] 因此灌满容器所需时间为[*](秒). 或由于灌满容器所需时间也就是z=1时所对应的时间t,于是在(**)中令z=1得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AY54777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是().
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组Ax=b的通解是().
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ1,λ2,…,λn互异,αi分别是方程组(A-λiB)x=0的非零解,i=1,2,…,n,证明α1,α2,…,αn线性无关。
设A,B,C,D为n阶矩阵,若ABCD=E,证明:A,B,C,D均为可逆矩阵;
证明:若A为n(n≥2)阶方阵,则有|A*|=|(-A)*|.
若D是由直线x=—2,y=0,y=2以及曲线所围成的平面区域,计算
曲面x2+2y2+3z2=1的切平面与三个坐标平面围成的有限区域的体积的最小值为________.
已知反常积分=_______.
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求B
求,其中∑为下半球面∑:的上侧,a为大于零的常数.
随机试题
实现城市各种功能所必需的物质基础设施是指()。
()负责执行董事会制定的金融创新发展战略和风险管理政策。
商业银行销售理财计划汇集的理财资金,应该按照()管理和使用。
不属于非执行董事应扮演的角色是()。
雁茗茶有“美容茶”的雅号。()
设某信道传输单边带下边带调制信号,并设调制信号m(t)的频带限制在5kHz,载频为100kHz。若接收机的输入信号加至包络检波器进行解调前,先经过一个带宽为5kHz的理想带通滤波器,则该理想带通滤波器的中心频率为()。
简述秘书礼仪的特征。
1956年4月,毛泽东发表了《论十大关系》的重要讲话,下面关于讲话的说法,正确的是()
Theauthor’sattitudetowardsthecurrentsituationintheexploitationofnaturalresourcesis______Whatdoestheauthorimpl
Icanthinkofnobettercareerforayoungnovelistthantoforsomeyearsasub-editoronaratherconservativenewspaper.The
最新回复
(
0
)