首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
admin
2015-05-07
225
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上
点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=
的圆面,若以每秒v
0
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
(Ⅰ)写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并求出水面高度z与时间t的函数关系;
(Ⅱ)求水表面上升速度最大时的水面高度;
(Ⅲ)求灌满容器所需时间.
选项
答案
(Ⅰ)由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是 [*] 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1-z)
2
]. 现由[*]=v
0
及z(0)=0,求z(t) 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1-z)
2
]dz=[*] (*) 两边积分并注意z(0)=0,得 [*] (**) (Ⅱ)求z取何值时[*]取最大值.已求得(*)式即 [*] (若未解答题(Ⅰ),可对题(Ⅰ)告知要证的结论即(**)式两边对t求导得[*],同样求得上式) 因此,求[*]取最大值时z的取值归结为求f(z)=z
2
+(1-z)
2
在[0,1]上的最小值点.由 [*] [*]f(z)在z=1/2在[0,1]上取最小值.故z=1/2时水表面上升速度最大. (Ⅲ)归结求容器的体积,即 [*] 因此灌满容器所需时间为[*](秒). 或由于灌满容器所需时间也就是z=1时所对应的时间t,于是在(**)中令z=1得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AY54777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是().
齐次线性方程组的系数矩阵为A,若存在3阶矩阵B≠O,使得AB=O,则().
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T.又β=[1,2,3]T.计算;Anξ1;
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论中:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.正确的个数为().
设f(t)为连续函数,则累次积分化为极坐标形式的累次积分为().
求下列极限:
求极限:
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:在分别已知X2=j(j=0,1,2,3)
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)若将容器内盛满的水从顶端全部抽出,至少需做功多少?
随机试题
用于治疗窦性心动过缓的方法不包括
适合作为《绚丽的民间彩塑》一课的教学重点的是()。
关于DSA成像的叙述,错误的是
A.水解B.光学异构化C.氧化D.聚合E.脱羧酚类药物的降解的主要途径是
建筑工程质量验收标准、规范编制的指导思想中,()是属于错的。
某项设备原值为90000元,预计净残值2700元,预计使用15000小时,实际使用12000小时,其中第五年实际使用3000小时,采用丁作量法第五年应计提折旧()元。
甘肃养马历史悠久,自()至今一直是我国养马业的重地。
认为“儿童在成长的过程国有关利他行为的规范的掌握是学习的结果”的理论属于()。
教师的根本任务是()。
WherecanIgetthereadingmaterial______?
最新回复
(
0
)