首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
admin
2021-07-27
55
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(Ⅰ)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(Ⅰ)的解.
其中正确的是( ).
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
x)=0,故(Ⅰ)的解必是(Ⅱ)的解,也即①正确,③不正确.当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零向量,可以证明这种情况下x,Ax,…,A
n
x是线性无关的(按定义证,依次左乘A
n
,A
n-1
,…,A即可证得).由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量必定是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(Ⅰ)的解,故②正确,④不正确.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/WLy4777K
0
考研数学二
相关试题推荐
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
微分方程y’’一λ2y=eλx+e-λx(λ>0)的特解形式为()
求微分方程y〞+y=χ2+3+cosχ的通解.
设矩阵A=,矩阵B满足(A*)-1BA*=BA*+8A,其中A*为A的伴随矩阵,求矩阵B.
已知矩阵A相似于矩阵B=则秩(A-2E)与秩(A-E)之和等于【】
设A为m×n矩阵,且r(A)=m,则()
设常数k>0,函数在(0,+∞)内零点个数为()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
随机试题
急性溶血性贫血时多见的是慢性溶血性贫血时多见的是
A.取不同部位粪便B.取黏液部分粪便C.取全部粪便,及时送检D.置培养管中,立即送检E.置于加温便盆内,连同便盆一起送检
关于散射线对照片影像的影响,正确的是
宏观经济管理的手段不包括()。
以下说法正确的是()。Ⅰ.利率风险是固定收益证券的主要风险Ⅱ.利率风险是非系统性风险Ⅲ.同一种类型的债券,长期债券利率比短期债券高Ⅳ.股票的收益率一般高于债券
由于商品流通企业的预测大多是从本企业角度出发的,因此商品流通企业的预测侧重于()。
手机的无线充电技术日趋成熟,方便了我们的生活。下列关于无线充电技术的说法不正确的是:
共和后期,罗马国家最高的行政和监督机构是()。
劳动成为商品的基本条件是
Someinsectspassthroughtheirentirelifecycles,fromeggtoadult,______daysorweeks.
最新回复
(
0
)