首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
admin
2021-07-27
75
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(Ⅰ)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(Ⅰ)的解.
其中正确的是( ).
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
x)=0,故(Ⅰ)的解必是(Ⅱ)的解,也即①正确,③不正确.当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零向量,可以证明这种情况下x,Ax,…,A
n
x是线性无关的(按定义证,依次左乘A
n
,A
n-1
,…,A即可证得).由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量必定是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(Ⅰ)的解,故②正确,④不正确.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/WLy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
求微分方程y〞+y=χ2+3+cosχ的通解.
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
设A,B均为正定矩阵,则()
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
随机试题
采用肾上腺皮质激素降低颅内压的作用原理是
当空调房间有吊顶可利用,且单位面积送风量较大、工作区温差要求严格时,宜采用何种送风方式?
建筑施工中,离心式水泵是()离心水泵。
某工程项目施工合同于2000年12月签订,约定的合同工期为20个月,2001年1月开始正式施工。施工单位按合同工期要求编制了混凝土结构工程施工进度时标网络计划,如图5-1所示,并经专业监理工程师审核批准。该项目的各项工作均按最早开始时间安
根据消费税法律制度的规定,下列各项中,应在生产、进口、委托加工环节缴纳消费税的有()。
甲公司系ABC会计师事务所的常年审计客户,主要从事电子产品的生产和销售。ABC会计师事务所委派X注册会计师担任甲公司2012年度财务报表审计项目合伙人。在审计存货时,X注册会计师编制了相关工作底稿,部分内容摘录如下:资料一:注释1:A原材料主要用于生
请从四个学习领域论述初中美术新课程标准中的分目标。
如图所示,一个长方体挖掉了部分圆柱体,从任意面剖开,哪一项不可能是该立体图形的截面?
Thewordscienceisheardsoofteninmoderntimesthatalmosteverybodyhassomenotionofitsmeaning.Ontheotherhand,its
Therelocateda______architecturechurchintheoldcity,whichwasacombinationoftileartofancientGreeceandRome.
最新回复
(
0
)