首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
admin
2018-06-27
92
问题
已知4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.又设β=α
1
+α
2
+α
3
+α
4
,求AX=β的通解.
选项
答案
方法一AX=β用向量方程形式写出为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,其导出组为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0.条件β=α
1
+α
2
+α
3
+α
4
说明(1,1,1,1)
T
是AX=β的一个特解.α
1
=2α
2
-α
3
说明(1,-2,1,0)
T
是导出组的一个非零解.又从α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
.得到r(A)=3,从而导出组的基础解系只含4-r(A)=1个解,从而(1,-2,1,0)
T
为基础解系.AX=β的通解为 (1,1,1,1)
T
+c(1,-2,1,0)
T
,c可取任意数. 方法二把α
1
=2α
2
-α
3
和β=α
1
+α
2
+α
3
+α
4
代入x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,得 x
1
(2α
2
-α
3
)+x
2
α
2
+x
3
α
3
+x
4
α
4
=2α
2
-α
3
+α
2
+α
3
+α
4
, 整理得 (2x
1
+x
2
)α
2
+(-x
1
+x
3
)α
3
+x
4
α
4
=3α
2
+α
4
, 由于α
2
,α
3
,α
4
线性无关,得同解方程组 [*] 解此方程组 [*] 得通解 (0,3,0,1)
T
+c(1,-2,1,0)
T
,c可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Aak4777K
0
考研数学二
相关试题推荐
作自变量替换,把方程变换成y关于t的微分方程,并求原方程的通解.
设函数f(x)在x=1的某邻域内连续,且有求f(1)及f’(1);
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
已知累次积分其中a>0为常数,则,可写成
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设二元可微函数F(z,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成求此二元函数F(x,y).
设ξ1=[1,3,一2]T,ξ2=[2,一1,3]T是Ax=0的基础解系,Bx=0和Ax=0是同解方程组,η=[2,a,b]T是方程组的解,则η=_________.
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明:若f(x)恰有两个零点,则此两零点必反号.
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解.试求:该方程组满足x2=x3的全部解.
(2002年试题,七)某闸门的形状与大小如图1—3—8所示,其中直线l为对称轴x闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少
随机试题
下列属于灭菌法的是
34岁男性患者,因周期性寒战、高热入院。查体脾肋下2cm,实验室检查RBC2.5×1012/L,Hb76g/L,血涂片发现间日疟原虫,最适宜的治疗是
赵某涉嫌报复陷害罪被检察机关立案侦查,在侦查即将终结时,赵某得知负责办理该案的侦查人员蔡某是被害人的胞兄,遂申请其回避。检察长经审查作出了蔡某回避的决定。对于蔡某在侦查阶段收集的证据,下列哪一选项是正确的?
下列量中属于国际单位制导出量的有____________。
支付结算的结算方式包括()。
我国古代提出“有教无类”思想的是著名教育家________。
观看“最美教师”“最美司机”人物事迹所产生的情感体验主要是()。
杜威的教育理论代表作是______。
现行PC机的联向技术中,采用串行方法与主机通讯时,其数据传输速率的单位经常采用( )。
主机板有许多分类方法,其中按扩展槽分类的是______。
最新回复
(
0
)