首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
admin
2018-06-27
144
问题
已知4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.又设β=α
1
+α
2
+α
3
+α
4
,求AX=β的通解.
选项
答案
方法一AX=β用向量方程形式写出为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,其导出组为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0.条件β=α
1
+α
2
+α
3
+α
4
说明(1,1,1,1)
T
是AX=β的一个特解.α
1
=2α
2
-α
3
说明(1,-2,1,0)
T
是导出组的一个非零解.又从α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
.得到r(A)=3,从而导出组的基础解系只含4-r(A)=1个解,从而(1,-2,1,0)
T
为基础解系.AX=β的通解为 (1,1,1,1)
T
+c(1,-2,1,0)
T
,c可取任意数. 方法二把α
1
=2α
2
-α
3
和β=α
1
+α
2
+α
3
+α
4
代入x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,得 x
1
(2α
2
-α
3
)+x
2
α
2
+x
3
α
3
+x
4
α
4
=2α
2
-α
3
+α
2
+α
3
+α
4
, 整理得 (2x
1
+x
2
)α
2
+(-x
1
+x
3
)α
3
+x
4
α
4
=3α
2
+α
4
, 由于α
2
,α
3
,α
4
线性无关,得同解方程组 [*] 解此方程组 [*] 得通解 (0,3,0,1)
T
+c(1,-2,1,0)
T
,c可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Aak4777K
0
考研数学二
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求灌满容器所需时间.
设y=y(x)是由方程x2+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=___________.
设积分区域D:{(x,y)|0≤x≤1,0≤y≤1},求
计算定积分(常数(a>0).
设A的特征值,特征向量;
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解.试求:该方程组满足x2=x3的全部解.
设,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分
设D={(x,y)|x2+y2≤,x≥0,y≥0,[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。[img][/img]
随机试题
下列四组动词中,能用于“把”字句的是()
商标权
在国外结婚并定居在国外的华侨,如定居国法院以离婚诉讼须由国籍所属国法院管辖为由不予受理,当事人向人民法院提出离婚诉讼的,由
雷格斯认为,农业社会向工业社会过渡期行政组织的特征是
A.受盛之官B.若雾露之溉C.泌槽粕D.决渎之官上焦为
以下关于肌张力过高的描述哪项是错误的
根据《反不正当竞争法》规定,下列哪些行为属于不正当竞争行为?(2010年试卷一第67题)
票据权利人为将票据权利出质给他人而进行背书时,如果未记载“质押”、“设质”或者“担保”字样,只是签章并记载被背书人名称,则该背书行为的效力是()。
甲、乙两高速入口之间有一段高速公路,A,B两辆车分别从甲、乙两高速入口相向而行,A车10分钟走的路程等于B车12分钟走的路程。A车进入高速并行驶6分钟后,B车开始行使,B车行驶60分钟时两车相遇,则相遇地点离甲、乙高速入口的距离比是:
下列选项中不属于结构化程序设计原则的是()。
最新回复
(
0
)