首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,证明:AnX=0和An+1X=0是同解方程组.
设A是n阶方阵,证明:AnX=0和An+1X=0是同解方程组.
admin
2017-06-14
31
问题
设A是n阶方阵,证明:A
n
X=0和A
n+1
X=0是同解方程组.
选项
答案
显然A
n
X=0的解必是A
n+1
X=0的解.反之:若A
n+1
X=0,则必有A
n
X=0, 用反证法,若A
n
X≠0,则必有A
n-1
X≠0,A
n-2
X≠0,…,AX≠0,X≠0,上述n+1个n维向量必线性相关,故存在不全为0的数k
1
,k
2
,…,k
n+1
使得 k
1
X+k
2
AX+…+k
n+1
A
n
X=0. ① ①式左乘A
n
得 k
1
A
n
X=0, A
n
X≠0得, k
1
=0. k
1
=0代入①式,再乘A
n-1
,可得 k
2
=0,同理有尼 k
i
=0,i=1,2,…,n+1,这和 k
1
,k
2
,…, k
n+1
不全为0矛盾,故必有A
n
X=0. 从而得证:A
n
X=0和A
n+1
X=0是同解方程组.
解析
转载请注明原文地址:https://kaotiyun.com/show/Apu4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
随机试题
HowtoImproveaChild’sAppetiteMostchildrenwith【C1】______(health)appetitesarereadytoeatalmostanythingthatiso
目前门控心肌显像采集时,通常将一个心动周期分成多少等份
肠结核肠道易激综合征
秦汉时代表示威仪登第的建筑物是()。
都某与某企业签订劳动合同,下列关于都某试用期的约定,有效的是()。
下列四句话中,表达有歧义的一句是:
公共生活超越了私人生活的局限,具有鲜明的开放性和透明性,对他人和社会的影响更为直接和广泛。当代社会公共生活的特征主要表现在()
设线性方程组 有非零解,则组成基础解系的线性无关的解向量有().
Theeffectofthebabyboomontheschoolshelpedtomakepossibleashiftinthinkingabouttheroleofpubliceducationinthe
A、IlikeChinesefood.B、It’snotmybusiness.C、Idon’tlikefish.D、Itdoesn’tworkforme.D本题考查对Whynot引导的提出建议的特殊疑问句的回答。题目问:
最新回复
(
0
)