首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT. 矩阵A的特征值和特征向量.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT. 矩阵A的特征值和特征向量.
admin
2013-04-04
58
问题
设向量α=(α
1
,α
2
,…,α
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
.
矩阵A的特征值和特征向量.
选项
答案
设A是A的任一特征值,η是A属于特征值λ的特征向量,即Aη=λη,η≠0.那么 A
2
η=λAη=λ
T
η. A
2
=0,故λ
T
η=0,又因η≠0,从而矩阵A的特征值是λ=0(n重根). 不妨设向量αβ的第1个分量α
1
≠0,b
1
≠0.对齐次线性方程组(0E-A)x=0的系数矩阵作初 等行蛮换.有[*] 得到基础解系 η
1
=(-b
2
,b
1
,0,…,0)
T
,η
2
=(-b
3
,0,b
1
,…,0)
T
,…,η
n-1
=(-b
n
,0,0,…,b
1
)
T
. 于是矩阵A属于特征值λ=0的特征向量为 k
1
η
1
+k
2
η
2
+…+k
n-1
η
n-1
,其中k
1
,k
2
,…,k
n-1
是不全为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/OH54777K
0
考研数学一
相关试题推荐
设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
(1987年)设f(χ)在χ=a处可导,则等于
二元函数f(x,y)=在点(0,0)处
(2005年试题,二)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22一y32,其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
要使ξ1=[1,0,2]T,ξ2=[0,1,一1]T都是线性方程组AX=0的解,只要系数矩阵A为().
[2009年]设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若∣A∣=2,∣B∣=3,则分块矩阵的伴随矩阵为().
(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:在分别已知X2=j(j=0,1,2,3)
随机试题
欣赏你的同事,你和同事之间会合作得更加融洽:欣赏你的下属,下属会更加努力地工作;欣赏你的爱人,爱情会更加甘甜;欣赏你的学生,学生会更加可爱。________。横线处应填入的句子是()。
女孩,16岁,近10个月来右上腹痛频繁伴黄疸,且逐渐加重,大便呈陶土色,消炎利胆治疗无好转。患儿生后6天曾行先天性胆总管囊肿十二指肠吻合术。确诊的方法以下哪种较好
北京市无业人员韩某,长期贩卖黄色光盘,2010年年底在一次打击盗版光盘活动中,被公安机关抓获,北京市劳动教养管理委员会根据《国务院关于劳动教养问题的决定》及有关规定,作出对韩某收容劳动教养1年的决定。复议机关与一审人民法院均维持原劳动教养1年的决定,韩某提
奥苏贝尔的问题解决模式的步骤有【】
日期2010-1-20在Excel系统内部存储的是()。
能够提高电力系统静态稳定性的措施有()。
河姆渡和半坡居民过着定居生活,最主要的原因是:
甲状舌管(thyroglossalduct)
"Ah,yes,divorce",RobinWilliamsoncemused,"fromtheLatinwordmeaningtoripoutaman’sgenitalsthroughhiswallet".The
如下图所示,网络站点A发送数据包给B,在数据包经过路由器转发的过程中,封装在数据包3中的目的IP地址和目的MAC地址是()。
最新回复
(
0
)