首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
admin
2017-01-21
64
问题
设向量组a
1
,a
2
线性无关,向量组a
1
+b,a
2
+b线性相关,证明:向量b能由向量组a
1
,a
2
线性表示。
选项
答案
因为α
1
,α
2
线性无关,α
1
+b,α
2
+b线性相关,所以b≠0,且存在不全为零的常数k
1
,k
2
,使 k
1
(a
1
+b)+k
2
(a
2
+b)=0,则有(k
1
+k
2
)b=—k
1
a
1
—k
2
a
2
。 又因为a
1
,a
2
线性无关,若k
1
a
1
+k
2
a
2
=0,则k
1
=k
2
=0,这与k
1
,k
2
不全为零矛盾,于是有 k
1
a
1
+k
2
a
2
≠0,(k
1
+k
2
)b≠0。 综上k
1
+k
2
≠0,因此由(k
1
+k
2
)b=—ka
1
—k
2
a
2
得 [*],k
1
,k
2
∈R,k
1
+k
2
≠0。
解析
转载请注明原文地址:https://kaotiyun.com/show/Y9H4777K
0
考研数学三
相关试题推荐
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设A是m×n阶矩阵,下列命题正确的是().
设n阶矩阵A与B等价,则必有().
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
随机试题
现代信息技术是一种涉及面广、内容极其复杂的综合性应用技术,其主要内容包括()。
简述证券投资分析的基本步骤。
患者女性,23岁,农民。一次与同村人发生口角,对方声音洪亮,患者自感不是对手。第二天起出现无法说话,与之交谈只能用手势表示。能正常咳嗽,到耳鼻喉科检查未发现声带异常。患者求助于心理治疗师,与心理治疗师交谈中患者渐入眠,入眠中心理治疗师引导其重现发生口角
图示结构的弯矩图正确的是()。
19世纪末复古思潮表现为()。
()属于恒值控制系统。
阅读下面一段文字,完成题目。高新技术带来的负效应高新技术的发展,应包括健全其抗御“灾害”的功能。但迄今为止,高新技术进步并未与高可靠性工艺、高可靠性监控、高可靠性管理的系统支撑及质保体系相匹配。因此,频频出现难以预料的尴尬局面。海湾战争
计算机的算法具有可行性、________、确定性和输入/输出的特点。
对于上市公司而言,有分红的企业才能发行新的股票。可是,如果一个企业有分红,那它就不需要融资。如果它需要融资,就没有办法分红。如果以上陈述为真,以下哪项陈述不可能假?
①海围着山,山围着我。沙田山居,峰回路转,我的朝朝暮暮,②日起日落,月望月朔,全在此中度过,我成了山人。问余何事栖碧山,笑而不答,山已经代我答了。其实山并未回答,是鸟代山答了,是虫,是松风代山答了。③山是禅机深蔬的高僧,轻易不开口的。人在楼上倚栏杆,山列坐
最新回复
(
0
)