首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f’(x)+f(x)一∫0xf(t) dt=0. (1)求导数f’(x); (2)证明:当x≥0时,成立不等式e一x≤f(x)≤1.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f’(x)+f(x)一∫0xf(t) dt=0. (1)求导数f’(x); (2)证明:当x≥0时,成立不等式e一x≤f(x)≤1.
admin
2016-12-16
31
问题
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式
f’(x)+f(x)一
∫
0
x
f(t) dt=0.
(1)求导数f’(x);
(2)证明:当x≥0时,成立不等式e
一x
≤f(x)≤1.
选项
答案
(1)整理后有等式 (x+1)f’(x)+(x+1)f(x)一∫
0
x
f (t)dt=0, 求导得到 (x+1)f"(x)+(x+2)f’(x)=0. 设 u(x)=f’(x), 则[*] 两边积分得到 lnu(x)=一x一ln(x+1)+lnC, [*] 由f(0)=1,得f’(0)=一1代入u(x)可得C=一1. [*] 两边在[0,x]上积分,利用式①有 e
一x
一1≤f(x)一f(0)≤0, 即有不等式 e
一x
≤f(x)≤1.
解析
先在所给等式两边求导得到f(x)的二阶微分方程,为求f’(x),视f’(x)为因变量,化为一阶微分方程而求之.求出f’(x)的表示式后再放缩化为不等式,最后积分即可得到f (x)的不等式.
转载请注明原文地址:https://kaotiyun.com/show/SBH4777K
0
考研数学三
相关试题推荐
设{an},{bn},{cn}均为非负数列,且则必有
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
把x→0+时的无穷小排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列顺序是_________.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
已知一抛物线通过x轴上的两点A(1,0),B(3,0)求证:两坐标轴与该抛物线所围图形的面积等丁x轴与该抛物线所围图形的面积;
差分方程3yx+1-2yx=0的通解为_______.
设函数f(x)对任意x均满足等式f(1+x)=af(x),且fˊ(0)=b,其中a,b为非零常数,则().
设则
差分方程满足条件y0=5的特解是_______________.
设则B等于().
随机试题
Eatinghealthilycostsabout$1.50moreperpersondaily,accordingtothemostthoroughreviewyetoftheaffordabilityofahe
已知二次型f(x1,x2,x3)=5x12+5x22+Cx32一2x1x2+6x1x3—6x2x3的秩为2,求参数C及此二次型对应矩阵的特征值.
患者,男,38岁。包皮溃破伴疼痛5天。既往无类似发作史。体格检查:包皮内板见多个针帽大小的浅溃疡,呈群集排列。关于该患者的处理下列不正确的是
A.氯化钡试剂B.硝酸银试剂C.硫代乙酰胺试剂D.锌与盐酸E.硫化钠试剂药物中硫酸盐的检查可用()。
某一非单向流洁净室等级为4级,房间高为3m,面积为80m2,所需换气次数在400次/h以下,房间断面风速为0.6m/s,则洁净室送风量为()。
商业银行应当对客户风险承受能力进行评估,确定客户风险承受能力评级,由低到高至少包括(),并可根据实际情况进一步细分。
满足效用最大化的商品组合()。
房地产保险的保险金额一般根据保险房地产的()确定。
练习曲线是练习进程与——之间函数关系的曲线图。
吴大成教授:各国的国情和传统不同,但是对于谋杀和其他严重刑事犯罪实施死刑,至少是大多数人可以接受的。公开宣判和执行死刑可以有效地阻止恶性刑事案件的发生,它所带来的正面影响比可能存在的负面影响肯定要大得多,这是社会自我保护的一种必要机制。史密斯教授
最新回复
(
0
)