首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f’(x)+f(x)一∫0xf(t) dt=0. (1)求导数f’(x); (2)证明:当x≥0时,成立不等式e一x≤f(x)≤1.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式 f’(x)+f(x)一∫0xf(t) dt=0. (1)求导数f’(x); (2)证明:当x≥0时,成立不等式e一x≤f(x)≤1.
admin
2016-12-16
88
问题
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式
f’(x)+f(x)一
∫
0
x
f(t) dt=0.
(1)求导数f’(x);
(2)证明:当x≥0时,成立不等式e
一x
≤f(x)≤1.
选项
答案
(1)整理后有等式 (x+1)f’(x)+(x+1)f(x)一∫
0
x
f (t)dt=0, 求导得到 (x+1)f"(x)+(x+2)f’(x)=0. 设 u(x)=f’(x), 则[*] 两边积分得到 lnu(x)=一x一ln(x+1)+lnC, [*] 由f(0)=1,得f’(0)=一1代入u(x)可得C=一1. [*] 两边在[0,x]上积分,利用式①有 e
一x
一1≤f(x)一f(0)≤0, 即有不等式 e
一x
≤f(x)≤1.
解析
先在所给等式两边求导得到f(x)的二阶微分方程,为求f’(x),视f’(x)为因变量,化为一阶微分方程而求之.求出f’(x)的表示式后再放缩化为不等式,最后积分即可得到f (x)的不等式.
转载请注明原文地址:https://kaotiyun.com/show/SBH4777K
0
考研数学三
相关试题推荐
[*]
将多项式P(x)=x6-2x2-x+3分别按(x-1)的乘幂及(x+1)的乘幂展开,由此说明P(x)在(-∞,-1]及[1,+∞)上无实零点.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设x∈(0,1),证明:1/ln(1+x)-1
计算二重积分sin(x2+y2)dxdy,其中积分区域D={(x,y)丨x2+y2≤π}
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).求线性方程组(I)的基础解系.
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
设n阶矩阵A与B等价,则必有
一阶常系数差分方程yt+1一4t=16(t+1)4t满足初值y0=3的特解是yt=___________.
设则在(-∞,+∞)内,下列正确的是()
随机试题
根据下面的提示,以“Itishightimeweforbadesettingofffireworks!”为题写篇短文。1.燃放烟花爆竹是中国人庆祝春节的传统习俗。它给节日增添了喜庆的气氛。2.但燃放烟花爆竹也带来很多不良影响
有关检查胎位的四步触诊法,以下哪项错误
A.结晶紫B.酚酞C.淀粉D.邻二氮菲E.甲基红下列滴定方法中使用的指示剂是非水碱量法()。
根据《商标法》规定,商品的商标未经核准注册的,该商品()。
根据以下资料,回答问题。2012年,长春市汽车工业完成产值4888.5亿元,比上年增长16.5%;完成工业增加值1104.7亿元。2012年1~11月,汽车工业实现主营业务收入4954.2亿元,比上年同期增长11.6%:实现利润总额442.1亿元
(11年)已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0.f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy.
在中断处理中,输入输出中断是指
以下叙述中正确的是
promotion
Whendidtheunemploymentratebegintoincrease?
最新回复
(
0
)