首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意. 记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意. 记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
admin
2016-07-20
34
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Aχ=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
,c任意.
记B=(α
3
,α
2
,α
1
,β-α
4
).求方程组Bχ=α
1
-α
2
的通解.
选项
答案
首先从AX=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
可得到下列信息: ①Aχ=0的基础解系包含1个解,即4-r(A)=1,得,r(A)=3.即r(α
1
,α
2
,α
3
,α
4
)=3. ②(1,2,2,1)
T
是Aχ=β解,即α
1
+2α
2
+2α
3
+α
4
=β. ③(1,-2,4,0)
T
是Aχ=0解,即α
1
-2α
2
+4α
3
=0.α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2. 显然B(0,-1,1,0)
T
=α
1
-α
2
,即(0,-1,1,0)
T
是Bχ=α
1
-α
2
的一个解. 由②,B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是 r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2. 则Bχ=0的基础解系包含解的个数为4-r(B)=2个.α
1
-2α
2
+4α
3
=0说明(4,-2,1,0)
T
是Bχ=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B(-2,-2,-1,1)
T
=0,说明(-2,-2,-1,1)
T
也是Bχ=0的解.于是(4,-2,1,0)
T
和(-2,-2,-1,1)
T
构成Bχ=0的基础解系. Bχ=α
1
-α
2
的通解为: (0,-1,1,0)
T
+c
1
(4,-2,1,0)
T
+c
2
(-2,-2,-1,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/B0w4777K
0
考研数学一
相关试题推荐
计算极限.
设f(x)=,则曲线y=f(x),f(x)的拐点为________
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在(-∞,+∞)上有定义,且对任意实数a,b,都有等式f(a+b)=eaf(b)+ebf(a)成立,又f’(0)=1,求f(x).
函数z=x2-y2在点A(1,1)处沿与x轴正向组成角α=60°的方向l的方向导数为().
求微分方程-y=|x|的通解.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
(2006年试题,18)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
随机试题
公安部督察委员会监督全国公安机关的督察工作。()
下尿路感染最常见的临床表现是
奶牛,2.5岁,产后已经18小时,仍表现弓背和努责,时有污红色带异味液体自阴门流出。治疗原则为
钢材试件受拉应力一应变曲线从原点到弹性极限的点称为()。[2013年真题]
中间业务发展的基础是()。
下列金融统计指标中计入我国社会融资规模的是()。
软件维护活动包括以下几类:改正性维护、适应性维护、【】维护和预防性维护。
日程
DespitetheendoftheColdWar,defenseandcivilindustrialinterestsin"small"scienceare______.
______somewhatambitiousaswellasnaive,theydecidedtoextendtheirgraduateeducationbyattendingaprestigiousuniversit
最新回复
(
0
)