首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2) =……=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2) =……=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2022-08-19
26
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)
=……=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
…<a
n
. 令k=f(c)/[(c-a
1
)(c-a
2
)…(c-a
n
), 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=(ξ
n
(1)
)=0,φ′(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
n
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 f(c)=[(c-a
1
)(c-a
2
)…(c-a
n
)]/n!f
(n)
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/B3R4777K
0
考研数学三
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,证明:存在ξ∈(a,b),使得
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为______.
证明:曲线上任一点处切线的横截距与纵截距之和为2.
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f’(ξ)-2f(ξ)+2=0.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
证明:
证明不等式:xarctanx≥ln(1+x2).
随机试题
高血钠症对血压影响的机理不包括
背景:某活动中心工程,地下1层,地上3层,建筑面积12300m2,结构为框架结构,工程于2011年3月20日开工,计划于2011年12月25日竣工,在施工过程中发生了以下事件:事件一:由于选址的原因,地基不好,因此基础下面设计有25根
甲企业所得税核算采用资产负债表债务法,适用的所得税税率为25%。2013年度应交企业所得税为25万元,201.3年度的纳税调整事项包括:本期产生应纳税暂时性差异5万元,转回可抵扣暂时性差异3万元;超过税前列支标准的业务招待费15万元;国库券利息收入10万元
下列企业战略中,属于稳定战略的有()。
Ihavehadalotoftrouble______(告诉她发生的事).
以下关于路基干湿类型划分的说法,正确的有()。
在利用组织策略进行复习的过程中,常用的表格有一览表和________。
为().
下列关于OLE对象的叙述中,正确的是()。
Sinceitwascommittedtotheideaofscienceasaninternational,politicallyneutralenterprise,theRoyalSocietyofLondonr
最新回复
(
0
)