首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2) =……=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2) =……=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2022-08-19
53
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)
=……=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
…<a
n
. 令k=f(c)/[(c-a
1
)(c-a
2
)…(c-a
n
), 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=(ξ
n
(1)
)=0,φ′(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
n
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 f(c)=[(c-a
1
)(c-a
2
)…(c-a
n
)]/n!f
(n)
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/B3R4777K
0
考研数学三
相关试题推荐
证明:当x>0时,x2>(1+x)ln2(1+x).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+2f(ξ)=0.
设f(x)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f’’(ξ)-f’(ξ)+1=0.
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f’(ξ)-2f(ξ)+2=0.
证明:
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
随机试题
患者,男性,65岁,慢性咳嗽史30余年。心电图如图3—1—6所示,提示
某女,25岁。患急性咽炎2日,症见咽痛、咽干、咽部红肿、口渴、微恶风、发热,舌边尖红、苔薄黄,脉浮数。证属外感风热,宜选用的成药是
在建筑场地设计标高确定的一般要求中,当无进车道时,一般室内地坪比室外地面高出0.45~0.60m,允许在()m的范围内变动。
外国投资者承诺用以后年度实现的利润进行再投资,即便计划用外商投资企业的利润进行再投资申请被国家有关部门批准,该再投资也不得享受再投资退税的待遇。()
()属于生物技术。
杜克(Duncker,1945)的蜡烛问题说明了()对问题解决的影响。
美国联邦所得税是累进税,收入越高,纳税率越高。美国的一些州还在自己管辖的范围内,在绝大部分出售商品的价格上附加7%左右的销售税。如果销售税也被视为所得税的一种形式的话,那么,这种税收是违背累进制原则的:收入越低,纳税率越高。以下哪项如果为真,最能
“项目”菜单的“运行文件”命令用于执行选定的文件,这些文件可以是()。
关系操作的特点是()操作。
已知三个字符为:a、X和5,按它们的.ASCII码值升序排序,结果是__________。
最新回复
(
0
)