首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是________.
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是________.
admin
2019-07-17
104
问题
设A=(a
ij
)
n×n
是n阶矩阵,A
ij
为a
ij
的代数余子式(i,j=1,2,…,n).|A|=0,A
11
≠0,则A*X=0的通解是________.
选项
答案
[*]
解析
|A|=0,A
11
≠0,r(A)=n—1,r(A*)=1,A*X=0有n一1个线性无关解向量组成基础解系,因A*A=|A|E=O,故A的列向量是A*X=0的解向量,又A
11
≠0,故A的第2,3,…,n列是A*X=0的n—1个线性无关解向量,设为:α
2
,α
3
,…,α
n
,故通解为k
2
α
2
+k
3
α
3
+…+k
n
α
n
,或者由已知方程A*X=0,即是A
11
x
1
+A
21
x
2
+…+A
n1
x
n
=0,故方程的通解是:
转载请注明原文地址:https://kaotiyun.com/show/B6N4777K
0
考研数学二
相关试题推荐
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.求方程组(Ⅱ)BX=0的基础解系;
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA-1α≠b.
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,C,d为常数)()
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
计算行列式
若则a=________.
设f(x)=ln(2x2-x-1),则f(n)(x)=_______.
随机试题
影响声场形状和大小的因素不包括
项目控制过程中,反复循环过程的控制状态为( )。
【背景资料】某水利枢纽工程建设内容包括大坝、溢洪道、水电站等建筑物。该工程由某流域管理机构组建的项目法人负责建设,某施工单位负责施工,在工程施工过程中发生如下事件:事件一:溢洪道施工需要进行爆破作业,施工单位使用一辆3.0t的小型载重汽
下列属效力待定合同的是()。
泰勒原理所包含的四大问题是指【】
关系转换说是()学派提出的。
在教育研究中常用的图示法有()。
协商民主是在中国共产党领导下,人民内部各方面围绕改革发展稳定重大问题和涉及群众利益的实际问题,在决策之前和决策实施中,开展广泛协商,努力形成共识的重要民主形式。协商民主()
There’sahugehoo-hainAmericaaboutanarticlepublishedonthebusinesswebsiteForbes.com.Itstartsofflikethis:"Guys:
为了使复选框禁用(即呈现灰色),应把它的Value属性设置为【】。
最新回复
(
0
)