首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是________.
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是________.
admin
2019-07-17
111
问题
设A=(a
ij
)
n×n
是n阶矩阵,A
ij
为a
ij
的代数余子式(i,j=1,2,…,n).|A|=0,A
11
≠0,则A*X=0的通解是________.
选项
答案
[*]
解析
|A|=0,A
11
≠0,r(A)=n—1,r(A*)=1,A*X=0有n一1个线性无关解向量组成基础解系,因A*A=|A|E=O,故A的列向量是A*X=0的解向量,又A
11
≠0,故A的第2,3,…,n列是A*X=0的n—1个线性无关解向量,设为:α
2
,α
3
,…,α
n
,故通解为k
2
α
2
+k
3
α
3
+…+k
n
α
n
,或者由已知方程A*X=0,即是A
11
x
1
+A
21
x
2
+…+A
n1
x
n
=0,故方程的通解是:
转载请注明原文地址:https://kaotiyun.com/show/B6N4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]连续,在(0,1)内f(χ)>0且茄f′(χ)=f(χ)+aχ2,又由曲线Y=f(χ)与直线χ=1,y=0围成平面图形的面积为2,求函数y=f(χ),问a为何值,此图形绕χ轴旋转而成的旋转体体积最小?
设α1,α2,α1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.设α1=,求出可由两组向量同时线性表示的向量.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|-A1一2A2,2A2+3A3,-3A3+2A1|=_____.
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
计算n阶行列式
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程所确定.又设题中出现的分母不为零,则()[img][/img]
设则当x→0时,f(x)与g(x)相比是()
证明函数恒等式arctanx=,x∈(-1,1).
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
随机试题
高度大干或等。250m的高层建筑,楼层层间弹性位移与层高之比的限值为
生存关注阶段的突出特点是_______。
四逆散主治的四肢厥逆的病机为
甲房产公司在开发“牡丹园”小区时与相邻的学校乙达成协议:乙15年内不得在校内兴建10层以上的建筑物,甲一次性支付1000万元作为补偿。但双方一直未办理登记手续。“牡丹园”开盘后很快销售一空。几年后,乙因招生规模扩大,为改善教学条件,在校内开工建造一栋15层
机械泡沫灭火器的使用温度范围为()
铜芯导线型号为()。
2012年甲公司在境外设立不具有独立纳税地位的分支机构,该分支机构2013年产生利润200万元,下列关于该境外利润确认收入时间的说法,正确的是()。(2014年)
由于审计测试及被审计单位内部控制的固有限制,如在投资决策时人为判断可能出现错误和由于人为失误而导致投资内部控制失效,注册会计师依照独立审计准则进行审计,并不能保证发现所有的错误或舞弊。( )只有认为控制设计合理,能够防止、发现并纠正认定层次的重大错报
小学后期、初中时期学生的学习动机是()。
Note:Whenmorethanoneanswerisrequired,thesemaybegiveninanyorder.Somechoicesmayberequiredmorethanonce.W
最新回复
(
0
)