首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是________.
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是________.
admin
2019-07-17
53
问题
设A=(a
ij
)
n×n
是n阶矩阵,A
ij
为a
ij
的代数余子式(i,j=1,2,…,n).|A|=0,A
11
≠0,则A*X=0的通解是________.
选项
答案
[*]
解析
|A|=0,A
11
≠0,r(A)=n—1,r(A*)=1,A*X=0有n一1个线性无关解向量组成基础解系,因A*A=|A|E=O,故A的列向量是A*X=0的解向量,又A
11
≠0,故A的第2,3,…,n列是A*X=0的n—1个线性无关解向量,设为:α
2
,α
3
,…,α
n
,故通解为k
2
α
2
+k
3
α
3
+…+k
n
α
n
,或者由已知方程A*X=0,即是A
11
x
1
+A
21
x
2
+…+A
n1
x
n
=0,故方程的通解是:
转载请注明原文地址:https://kaotiyun.com/show/B6N4777K
0
考研数学二
相关试题推荐
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明r=n:
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:f(x)的极值.
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式|A—E|的值.
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
要设计一形状为旋转体的水泥桥墩,桥墩高为h,上底面半径为a,要求桥墩在任一水面上所受上部桥墩的平均压强为一常数P,设水泥比重为ρ,试求桥墩形状.
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=_________。
证明函数恒等式arctanx=,x∈(-1,1).
若则f(x)=___________.
随机试题
男,28岁。被沸水烫伤,右手掌焦痂呈皮革样,不痛,面部红斑,表面干燥,左上肢、颈部、胸腹部、双足和双小腿均为水疱,有剧痛。并发生低血容量性休克。估计该病人Ⅱ度烧伤面积为:
施工合同中的承包人到材料供应商处去购买水泥,由于水泥标号不清楚而将425号的水泥当作525号水泥购入。该买卖合同没有仲裁条款,发现问题后,承包人应( )。
税收法律关系的产生、变更与消灭是由()决定的。
企业国有资产的出资人和所有权人虽然是国家,但根据法律的规定代表国家行使国有资产所有权的是()。
甲、乙、丙、丁四个队进行足球循环比赛,已知下列情况:从以上条件,可得出的结论是()。
同样走100米,小明要走180步,父亲要走120步。父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
辩证唯物主义认识论是以实践观点和辩证观点为特征的反映论=这种以实践观点和辩证观点为特征的反映论,不仅驳倒了不可知主义怀疑论和唯心主义先验论,而且克服了旧唯物主义直观反映论的缺陷,实现了人类认识史上的变革。这种能动反映论的基本特点有()
如果希望用户在文本框中输入的字符显示的是“*”号,而不是真正输入的内容,应该指定的属性是
Whenmyfatherwasgettingreadyforwork,our【C1】______wasruledbyknocksandwords.One【C2】______onthetablemeant"Iamr
Pub-talkA)Pub-talk,themostpopularactivityinallpubs,isanativedialectwithitsowndistinctivegrammar.Thereare
最新回复
(
0
)