首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
记曲面z=x2+y2-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
记曲面z=x2+y2-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
admin
2017-08-28
87
问题
记曲面z=x
2
+y
2
-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线
在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
选项
答案
由z’
x
=2x-2=0,z’
y
=2y-1=0,得驻点为[*],在驻点处 A=z’’
xx
=2,B=z’’
xy
=0,C=z’’
yy
=2, △=B
2
-AC=-4<0,且A>0,所以[*]为极小值,而驻点唯一,故[*]为曲面的最低点,曲面在P处的切平面π的方程为z=[*] 曲面x
2
+y
2
+z
2
=6在点Q(1,1,-2)处的法向量为n
1
=(2,2,-4);平面x+y+z=0在点Q(1,1,-2)处的法向量为n
2
=(1,1,1);其交线在点Q(1,1,-2)处的切向量为n=n
1
×n
2
=(2,2,-4)×(1,1,1)=6(1,-1,0),于是直线l的方程为[*],其一般式方程为[*] 设过直线l的平面束方程为(x+y-2)+λ(z+2)=0,法向量n
λ
=(1,1,λ),而切平面的法向量n
π
=(0,0,1),令n
λ
垂直n
π
,得λ=0. 即直线l在平面π上的投影l’的方程为[*]到直线l’的距离为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/B9r4777K
0
考研数学一
相关试题推荐
设a与b都是常数且b>a>0.试写出yOz平面上的圆(y一b)2+z2=a2绕Oz轴一圈生成的环面S的方程;
设A是3×3矩阵,β1,β2,β3是互不相同的3维列向量,且都不是方程组Ax=0的解,记B=[β1,β2,β3],且满足r(AB)<r(A),r(AB)<r(B).则r(AB)等于()
设y=y(x)是由方程y3+xy+x2一2x+1=0确定并且满足y(1)=0的函数,则=_________.
(2009年试题,一)设随机变量X的分布函数为其中φ(x)为标准正态分布函数,则E(X)=().
设随机变量X的数学期望E(X)=μ,方差D(X)=σ2,则由切比雪夫不等式,有P{|X-μ|≥3σ}≤_______.
求不定积分
若正项级数收敛,则().
设A为三阶矩阵,令将A的第一、二两行对调,再将A的第三列的2倍加到第二列成矩阵B,则B等于().
设(X,Y)的联合密度函数为(Ⅰ)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=x(0≤x≤)下Y的条件密度函数fY|X(y|x).
下列命题①若>1,则an发散②若(a2n-1+a2n)收敛,则an收敛③若an>0,0(n=1,2,…),并存在极限nan若an收敛,则an=中正确的是
随机试题
破伤风的潜伏期平均为()
某企业总资产为2000万元,其中流动资产500万元,存货100万元,负债200万元,流动负债100万元,则其流动比率为()。
会计凭证有哪些作用?
可用来判断现象之间相关方向的指标有()。
随着我国国民经济的发展,人民生活水平显著提高,百姓健康水平不断提高,60岁以上老年人口有较大增长,人口老龄化问题凸显。2015年,我国老龄人口达到3亿多,老龄社会和养老问题成为备受社会关注的焦点。在2010年、2014年的全国人民代表大会上,代表
我国地方各级人民政府是地方各级人民代表大会的执行机关,其每届任期与本级人民代表大会任期相同。下列各级人民政府中每届任期为3年的是()。
教室:自习
给定资料1.中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大操大办、铺张浪费的不良风
Lookatthenotebelow.Youwillhearawomancallingaboutthearrangementsforameeting.TELEPHONEMESSAGEFor:JohnFitzgera
Thereisabeliefamongmanyeducatorsthatstudentattentionpeaksduringthefirst15minutesofclassroominstruction—a(n)(1)
最新回复
(
0
)