首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
记曲面z=x2+y2-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
记曲面z=x2+y2-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
admin
2017-08-28
63
问题
记曲面z=x
2
+y
2
-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线
在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
选项
答案
由z’
x
=2x-2=0,z’
y
=2y-1=0,得驻点为[*],在驻点处 A=z’’
xx
=2,B=z’’
xy
=0,C=z’’
yy
=2, △=B
2
-AC=-4<0,且A>0,所以[*]为极小值,而驻点唯一,故[*]为曲面的最低点,曲面在P处的切平面π的方程为z=[*] 曲面x
2
+y
2
+z
2
=6在点Q(1,1,-2)处的法向量为n
1
=(2,2,-4);平面x+y+z=0在点Q(1,1,-2)处的法向量为n
2
=(1,1,1);其交线在点Q(1,1,-2)处的切向量为n=n
1
×n
2
=(2,2,-4)×(1,1,1)=6(1,-1,0),于是直线l的方程为[*],其一般式方程为[*] 设过直线l的平面束方程为(x+y-2)+λ(z+2)=0,法向量n
λ
=(1,1,λ),而切平面的法向量n
π
=(0,0,1),令n
λ
垂直n
π
,得λ=0. 即直线l在平面π上的投影l’的方程为[*]到直线l’的距离为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/B9r4777K
0
考研数学一
相关试题推荐
设抛掷硬币3次,记随机事件A为第1次出现正面,随机事件B为出现两次正面,令求二维随机变挝(X,Y)的概率分布.
设正项级数收敛,正项级数发散,则①必收敛.②必发散.③必收敛.④必发散.中结论正确的个数为()
设函数则f(x)的间断点()
设A是3阶可逆矩阵,α=[a1,a2,a3]T,β=[b1,b2,b3]T是3维列向量,且βTA-1α≠一1.验证:
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是()
(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中,写出此方程组的通解.
设随机变量X的概率密度函数为对X进行两次独立观察,其结果分别记为X1,X2,令确定常数A,并计算概率P{X1
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
设X服从参数为λ的指数分布,Y=min(X,2}.(1)求Y的分布函数;(2)求P{Y=2);(3)判断Y是否为连续型随机变量;(4)在{Y=2)的条件下,求{X>3}的概率.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n.
随机试题
在下列开挖方法中,适用于土、石质傍山路堑开挖方法的是()。
最适于进行输卵管结扎术的时间是()
埋地管道要承受土壤压力和外面的各种重力负荷,防腐层必须具备抗冲击性能。
人生观
使子宫发生强直性收缩的是降低妊娠子宫对催产素敏感性的是
当采用变动单价时,合同中可以约定合同单价调整的情况有()。
Ultralight(超轻型的)airplanesarearecentdevelopmentinaviationthatprovidewhataviationenthusiastshavelongbeenseeking:b
若一棵二叉树中有24个叶结点,有28个仅有一个孩子的结点,则该二叉树的总结点数为()。
A、 B、 C、 D、 D
在Linux中可以实现代理服务器功能的软件是(56)。
最新回复
(
0
)