首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,且∫0xtf(x+t)dt=lnx+1,已知f(2)=1/2,求积分12f(x)dx的值。
设f(x)连续,且∫0xtf(x+t)dt=lnx+1,已知f(2)=1/2,求积分12f(x)dx的值。
admin
2019-12-06
58
问题
设f(x)连续,且∫
0
x
tf(x+t)dt=lnx+1,已知f(2)=1/2,求积分
1
2
f(x)dx的值。
选项
答案
令u=x+t,则t=u-x,dt=du,根据换元积分法, ∫
0
x
f(x+t)dz =∫
x
2x
(u-x)f(u)du =∫
x
2x
uf(u)-x∫
x
2x
f(u)du=lnx+1, 在等式∫
x
2x
uf(u)du-x∫
x
2x
f(u)du=lnx+1两端同时对x求导可得 2xf(2x)×2-xf(x)-∫
x
2x
f(u)du-x[2f(2x)-f(x)]=1/x, 移项合并得 ∫
x
2x
f(u)=2xf(2x)-[*]。 在上式中,令x=1,结合f(2)=1/2,可得 ∫
1
2
f(u)du=2×[*]-1=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/BTA4777K
0
考研数学二
相关试题推荐
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
设A,B均为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=_______.
交换积分次序=__________.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,r线性无关.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.当k为何值时,A+kE为正定矩阵?
验证函数f(x)=x3+x2在区间[-1,0]上满足罗尔定理.
以y1=excos2x,y2=exsin2x与y3=e—x为线性无关特解的三阶常系数齐次线性微分方程是
随机试题
WithoutthehelpofmyEnglishteacher,I(win)________thefirstprizeintheEnglishSpeakingCompetition.
Beingvery_____,heknewwhatwasgoingonabouthim.
离散型随机变量的分布律具备()性质。
证券公司设立限定性集合资产管理计划,应当事先报( )。
企业处置一项以公允价值模式计量的投资性房地产,实际收到的金额为100万元,投资性房地产的账面余额为80万元,其中成本为70万元,公允价值变动为10万元。该项投资性房地产是由自用房地产转换的,转换日公允价值大于账面价值的差额为20万元。假设不考虑相关税费,处
H公司司是一家高成长的公司,目前每股价格为20元,每股股利为1元,股利预期增长率为6%。H公司现在急需筹集资金5000万元,有以下3个备选方案。方案1:按照目前市价增发股票250万股。方案2:平价发行10年期的长期债券。目前新发行的10年期政府债券的
青春期阶段的自我中心主义是否认其他人可能有不同的知觉和相信的事物。()
随着手机和网络的普及,人们开始随时随地地获取各种信息。但有研究认为,正是因为人们接触过多信息,导致想法增多。过多想法无法实现时,人们会利用各种信息填充大脑,让无法实现的想法所带来的焦虑暂时不进入脑海。根据以上描述可以推出()。
一台主机正在通过一条10Gbit/s的信道发送65535字节的满窗口数据,信道的往返延迟为1mS,不考虑数据处理时间。TCP连接可达到的最大数据吞吐量是()。(假设用于标记字节的序号位为32位,报文的生存时间为120s)
有以下程序:#include<iostream.h>Floatfun(intx,inty){return(x+y);}voidmain(){inta=2,b=5,c=8;cout<
最新回复
(
0
)