首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(χ,y,z)=χ+y-z2+5在区域力:χ2+y2+z2≤2上的最大值与最小值.
求f(χ,y,z)=χ+y-z2+5在区域力:χ2+y2+z2≤2上的最大值与最小值.
admin
2022-09-14
26
问题
求f(χ,y,z)=χ+y-z
2
+5在区域力:χ
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
f(χ,y,z)在有界闭区域Ω上连续,一定存在最大、最小值. 第一步,先求f(χ,y,z)在Ω内的驻点. 由[*]f(χ,y,z)在Ω内无驻点,因此f(χ,y,z)在Ω的最大、最小值都只能在Ω的边界上达到. 第二步,求f(χ,y,z)在Ω的边界χ
2
+y
2
+z
2
=2上的最大、最小值, 从边界方程χ
2
+y
2
+z
2
=2解出z
2
=2-χ
2
-y
2
代入f(χ,y,z)得 f(χ,y,z)[*]=χ+y+χ
2
+y
2
+3[*]g(χ,y) 转化为求g(χ,y)在区域D:χ
2
+y
2
≤2的最大、最小值. 先求g(χ,y)在D内驻点,解方程组 [*] 相应地[*] 再看D的边界χ
2
+y
2
-2=0.还用拉格朗日乘子法,令H(χ,y,λ)=χ+y+χ
2
+y
2
+3+λ(χ
2
+y
2
-2),解方程组 [*] 由前二个方程得χ=y,代入第三个方程后得 χ=y=±1 因此得驻点(χ,y)=(1,1),(-1,1),又 g(-1,-1)=3,g(1,1)=7 因此g(χ,y)在区域D,也就是f(χ,y,z)在区域Ω的最大值为7,最小值为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/BWf4777K
0
考研数学二
相关试题推荐
=_____
曲线的斜渐近线方程为_______.
设5χ12+χ22+tχ32+4χ1χ2-2χ1χ3-2χ2χ3为正定二次型,则t的取值范围是_______.
微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为______。
设k为常数,则=_______.
(Ⅰ)下列可表示由双纽线(x2+y2)2=x2-y2围成平面区域的面积的是________.(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及x轴围成平面图形的面积S=________.
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是_________.
设f(x)=为了使f(x)对一切x都连续,求常数a的最小正值.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
(2007年)设函数f(χ)在χ=0处连续,下列命题错误的是【】
随机试题
上呼吸道感染3周后出现皮肤瘀点,血小板检查为30×109/L,骨髓象示骨髓巨核细胞数量轻度增加,巨核细胞发育成熟障碍。曾服用药物治疗,症状时轻时重,反复发作,就诊时表现为斑色暗淡,多散在出现,时起时消,过劳则加重,心悸、气短、头晕目眩、食欲不振、面色苍白、
患儿,女,8岁。因倒开水时不慎摔倒,双上肢被烧伤,创面渗出明显,创底肿胀发红,摸之温度较高,有疼痛感。其诊断是
我国面积最大的湖泊是()
在工程建设活动中,照明设计以满足最低照度为原则,照度不应超过最低照度的()
财政行政诉讼的主管机关是( )。
申请设立股份有限公司,应当提交的文件有( )。
A、8B、9C、13D、16C此题答案为C。第三个三角形的中心数字与周围相差很多,考虑乘除关系仍然难以得到合适的规律,因此考虑多次方,易发现60=26-4,代入验证其他三角形得到:第一个三角形,13—1=0;第二个三角形,32-2=7;第四个三角形
意在“兴苦学之风,广辟留欧学界”,输入“民气民智先进之国”的文明,创造“新社会、新国民”的运动是
根据我国选举法的规定,全国人民代表大会和地方各级人民代表大会的选举经费由()。
TheInternetandcellphonesarebringingpeopletogether,not【C1】______usapart—atleast,accordingtoanewsurveyrecentlyby
最新回复
(
0
)