首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶矩阵,则如下命题: ①若A2~B2,则A~B; ②若A~B且A,B可逆,则A-1+A2~B-1+B2; ③若A,B特征值相同,则A~B; ④若A~B且A可相似对角化,则B可相似对角化,其中正确的命题为( ).
设A,B为n阶矩阵,则如下命题: ①若A2~B2,则A~B; ②若A~B且A,B可逆,则A-1+A2~B-1+B2; ③若A,B特征值相同,则A~B; ④若A~B且A可相似对角化,则B可相似对角化,其中正确的命题为( ).
admin
2021-01-09
48
问题
设A,B为n阶矩阵,则如下命题:
①若A
2
~B
2
,则A~B;
②若A~B且A,B可逆,则A
-1
+A
2
~B
-1
+B
2
;
③若A,B特征值相同,则A~B;
④若A~B且A可相似对角化,则B可相似对角化,其中正确的命题为( ).
选项
A、①③
B、①②
C、②③
D、②④
答案
D
解析
取
,因为A
2
=B
2
=O,所以A
2
~B
2
,
因为r(A)=1≠r(B)=0,所以A与B不相似,则①不正确;
因为A~B,所以存在可逆矩阵P,使得P
-1
AP=B,
从而P
-1
A
-1
P=B
-1
且P
-1
A
2
P=B
2
,于是P
-1
(A
-1
+A
2
)P=B
-1
+B
2
,
即A
-1
+A
2
~B
-1
+B
2
,则②正确;
设
,显然A,B特征值相同,而r(A)≠r(B),故A与B不相似,则③不正确;
设A~B,即存在可逆阵P
1
,使得P
1
-1
AP
1
=B且A,B的特征值相同,设其为λ
1
,…,λ
n
,
因为A可相似对角化,所以存在可逆阵P
2
,使得
P
-1
AP
2
=
,即A=P
2
P
2
-1
,
于是A=P
1
BP
-1
=P
2
P
2
-1
,即
P
2
-1
BP
1
-1
P
2
=
,或(P
1
-1
P
2
)
-1
BP
1
-1
P
2
=
故B可相似对角化,则④正确,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/6J84777K
0
考研数学二
相关试题推荐
已知xy=yx,则yˊ=_______.
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0.(Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使(Ⅱ)求极限
曲线y=的渐近线()
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=2/3的解。
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
已知函数y=y(x)满足微分方程x2+y2y’=1一y’,且y(2)=0,求y(x)的极大值与极小值.
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明向量组α,Aα,…,Ak-1α是线性无关的.
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
(18年)求不定积分
随机试题
市政绩效管理协议的主要内容包括【】
按有关规定,下列采购方式中,可以进行多次报价竞争的采购方式是()。
上市公司信息披露事务管理制度应当经公司董事会审议通过,报注册地证监局和证券交易所备案。()
根据《信托法》规定,下列说法错误的是()。
案例: 2021年1月5日,赵某与钱某订立书面借款合同。次日,赵某按照约定向钱某提供借款220万元。钱某的朋友孙某与李某分别为该笔借款提供担保。其中,孙某以其自有房屋提供抵押担保,双方于1月5日签订房屋抵押合同,于1月8日办理抵押登记;李某则为之提供连带
下列关于数罪并罚的表述,正确的有()。
下列行为中,属于政府履行行政管理职能的有()。
论说文:根据下述材料,写一篇700字左右的论说文,题目自拟。一个沿街流浪的乞丐每天总在想,假如我手头要有两万元钱就好了。一天,这个乞丐无意中发觉了一只跑丢的很可爱的小狗,乞丐发现四周没人,便把狗抱回了他的窑洞里,拴了起来。这只狗的主人是本市有名的大富翁
【B1】【B13】
Whatdoyouknowaboutthelecture?
最新回复
(
0
)