首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A为三阶实对称矩阵,A的秩为2,且 求A的特征值与特征向量.
A为三阶实对称矩阵,A的秩为2,且 求A的特征值与特征向量.
admin
2017-10-21
47
问题
A为三阶实对称矩阵,A的秩为2,且
求A的特征值与特征向量.
选项
答案
由条件得A(1,2,一1)
T
=(一3,一6,3),A(1,0,1)
T
=(3,0,3),说明(1,2,一1)
T
和(1,0,1)
T
都是A的特征向量,特征值分别为一3和3. A的秩为2<维数3,于是0也是A的特征值. A的特征值为一3,3,0. 属于一3的特征向量为c(1,2,一1)
T
,c≠0. 属于3的特征向量为c(1,0,1)
T
,c≠0. 属于0的特征向量和(1,2,一1)
T
,(1,0,1)
T
都正交,即是方程组 [*] 的非零解,解出属于0的特征向量为:c(一1,1,1)
T
,c≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/BdH4777K
0
考研数学三
相关试题推荐
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设A是n阶正定矩阵,证明:|E+A|>1.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
随机试题
按矫正时被矫正工件的温度分类可分为()两种。
条件反射的特点是()
A.间日疟原虫、恶性疟原虫B.恶性疟原虫、三日疟原虫C.三日疟原虫、卵形疟原虫D.间日疟原虫、三日疟原虫E.间日疟原虫、卵形疟原虫疟疾复发率较高的感染疟原虫种类
A.志贺痢疾杆菌B.福氏痢疾杆菌C.舒密次痢疾杆菌D.鲍氏痢疾杆菌E.宋内痢疾杆菌我国近年来引起菌痢最常见的病原菌是
血管壁功能异常见于
猩红热出现皮疹多在发热后( )。
创造性思维是多种思维的综合表现,包括()。
求的间断点并分类.
Inwinter,mostanimalshaveahardtime______anythingtoeat.
Scientistshavedevelopedanewcancerdrug.Sofar,theyhavetasteditonlyon【B1】______animals.Thedrugisdesignedto【B2】__
最新回复
(
0
)