首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
admin
2018-08-03
70
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有3个线性无关的解向量.
答案
B
解析
由A
*
≠0知A
*
至少有一个元素A
ij
=(一1)
i+j
M
ij
≠0,故A的余子式M
ij
≠0,而M
ij
为A的n一1阶子式,故r(A)≥n一1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n一1.因此Ax=0的基础解系所含向量个数为n—r(A)=n一(n一1)=1,只有B正确.
转载请注明原文地址:https://kaotiyun.com/show/Bgg4777K
0
考研数学一
相关试题推荐
设A为m×n阶矩阵,且r(A)=m<n,则().
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+xy2]dy=0为全微分方程,求f(x)及该全微分方程的通解.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设a0=1,a1=一2,a2=(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
求幂级数的和函数.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
随机试题
房地产开发企业应当对其开发的建设项目质量承担责任,()等单位应当依照有关法律、法规和合同约定,承担相应的责任。
根据FIDIC合同条件,()属于工程量清单项目。
甲公司2012年12月30日出资8000万元取得乙公司80%的股权,作为长期股权投资核算,并按准则规定采用成本法。2013年1月15日乙公司宣告发放现金股利500万元,则甲公司应将其应收的现金股利500万元记入“()”科目。
费德勒认为,决定领导行为有效性的关键情境因素不包括()。
一、注意事项1.《申论》考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,然后按“申论要求”依次作答。二、给定资料1.200
以下关于typedef的叙述错误的是
IwishI______myselfbetterinEnglish,butI______.
【B1】【B11】
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirworktheymustreadletters,reports,tradepublication
Imagineananimalthatbecomesfrozenincoldweather.Then,whenitgetswarmer,theanimalsimplyunfreezesandgoesbacktoi
最新回复
(
0
)